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A B S T R A C T

Characterization of geothermal reservoirs is an important step for exploration and development of geothermal
energy, which is reliable and sustainable for the future. Based on the inversion results of seismic reflection data,
lithofacies and porosity are predicted beyond well locations on a potential geothermal reservoir in the north of
Copenhagen, onshore Denmark. To classify the lithofacies, a new system of Artificial Neural Networks-Hidden
Markov Models is proposed to consider the complex spatial distribution of rock properties and the intrinsic
depositional rules. Artificial Neural Networks can overcome the common Gaussian assumption for the dis-
tribution of rock properties. At the same time, the transition matrix in Hidden Markov Models provides the
conditional probability for the lithofacies transitions along the vertical direction. After classification, the re-
sulting lithofacies are used to constrain the porosity prediction, in which the Artificial Neural Networks is trained
and applied within each type of lithofacies, as a regression process. The novelty of this approach is in the
integration of statistics and computer science algorithms that allows capturing hidden and complex relations in
the data that cannot be explained by traditionally deterministic geophysical equations. This workflow could also
improve the prediction accuracy and the uncertainty quantification of the porosity distribution given rock
properties.

1. Introduction

As extracted from the earth’s heat, the geothermal energy is a reli-
able and sustainable form of energy, which is an attractive substitute of
fossil fuels to heat buildings with less CO2 emissions (Eidesgaard et al.,
2019). Opposed to other low-carbon options like solar or wind powers,
this energy is a non-intermittent alternative, i.e. it is fully accessible at
all weathers (Zwaan and Longa, 2019).

A geothermal fluid exploration relies on various geophysical
methods, such as different inversion schemes applied to seismic, elec-
tromagnetic, gravity, and magnotelluric data (Ars et al., 2019), of
which the magnetotellurics (MT) is generally more common. MT allows
delineating the electrical conductivity structures of the geothermal area
and measuring the difference in the resistivity between geothermal-rich
rocks and surrounding formations (Maithya and Fujimitsu, 2019).
Rosenkjaer et al. (2015) inverted 3D MT datasets from the Krafla and
Hengill geothermal area, Iceland, for the characterization of subsurface
structures. However, MT methods are applicable in geothermal places
with high temperatures, whereas in sedimentary basins with average/
low temperatures, seismic approaches are more promising.

Seismic data describe elastic contrasts at the layers’ interfaces in the
subsurface, and they provide high-resolution images of the deeper
structures and are used for the exploration of geothermal reservoirs as
well. Seismic amplitudes and travel-times could be interpreted to
identify anomalies that might reveal geothermal potentials. Casini et al.
(2010) analyzed a 3D seismic survey to identify fractured zones in a
deep geothermal reservoir at the Travale test site (Italy). Lüschen et al.
(2014) simulated the potential of a hydrothermal reservoir for sus-
tainable usages at Unterhaching, Germany, using seismic data. A high-
resolution 3D seismic data was analyzed by Krawczyk et al. (2019) to
further develop a geothermal research platform in the Northeast
German Basin.

In this paper, we propose to use seismic attributes derived from the
elastic inversion of seismic data to characterize a potential geothermal
reservoir in Denmark. Acoustic impedance (AI) and the ratio between
P-velocity and S-velocity (Vp/Vs) obtained from seismic inversion are
rock-physical parameters that are peculiar for different rock types and
are highly correlated to porosity (Kumar et al., 2014). The degree of
reservoir compartmentalization is reflected by different types of rocks,
and the amount of energy resources is calculated based on the value of
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reservoir porosity (Keelan, 1982; Bosch et al., 2002). In order to predict
these reservoir properties, many methods have been presented. Mukerji
et al. (2001) classified reservoir lithologies and pore fluids based on the
statistical rock-physical models and seismic information. Under a
Bayesian approach, Grana et al. (2017) and Grana (2018) developed a
joint inversion of seismic data for the simultaneous estimation of re-
servoir rocks and fluid properties.

In this characterization study, to account for the vertical de-
pendency of the lithofacies, a first-order stationary Markov chain in
Hidden Markov Models (HMM) is introduced (Rabiner, 1989; Elfeki and
Dekking, 2001). A Markov model is a statistical approach used to de-
scribe a sequence of unknown/hidden occurrences, such as the litho-
facies sequence in the subsurface, based on the probability of the oc-
currence at a certain location conditioned to the occurrence at a
previous location. Similar applications can be found in the hydrocarbon
exploration (Grana et al., 2017; Feng et al., 2018a). However, instead of
adopting a Gaussian assumption in HMM (Lindberg and Grana, 2015),
which is usually inadequate to describe complex data distributions, the
non-linear relationship between seismically inverted properties (AI and
Vp/Vs) and reservoir lithofacies is modelled via the Artificial Neural
Networks (ANN). ANN is a subclass of deep-learning methods capable
of modelling the link between model variables and data responses as a
system inspired by biological neuron functionalities. The algorithm
learns the non-linear relations between the parameters of interest and
the input data with the help of a number (‘depth’) of hidden layers.

In particular, an integrated system combining ANN and HMM
(ANN-HMM) is proposed to classify reservoir lithofacies with seismic
inversion results as inputs. Then, using a regression ANN, reservoir
porosity is inverted under the constraint of previously classified litho-
facies, to reduce the prediction uncertainty. The novelty of this pro-
posed methodology is in the integration of advanced statistical
methods, such as Markov chain models, and deep-learning algorithms,
like neural networks, to simulate complex geological sequences where
physical models cannot completely describe this information, and data-
driven approaches are used to predict the model parameters based on
higher-order relations hidden in the data. In traditional approaches, a
relation between the model parameters and the measured data must be
assumed and calibrated on the logging dataset. However, the geophy-
sical models, including petrophysical relations, are only approximations
of the physical responses measured in the subsurface and often cannot
capture the behavior of the model properties in some intervals where
the predictions deviate from the observed trends. Furthermore, tradi-
tional methods require the knowledge of several parameters that cannot
be directly measured most of the time. In the proposed approach, the
statistical model imposed on the prediction by the Markov chain ap-
proach allows preserving the geological realism of the sequential pat-
terns, and the integration of the deep-learning algorithms enables ex-
tracting complex relations between the data and the model variables
from a limited training dataset. Hence, the proposed approach is data-
driven and does not require prior assumptions or the use of initial ap-
proximate models.

The content of this paper is organized as follows: first, geothermal
resources in Denmark are outlined briefly; then, the new approaches are
introduced and described; finally, the characterization of reservoir li-
thofacies and porosity, based on the inversion results from a seismic
survey in the north of Copenhagen, Denmark is presented.

2. Geothermal resources in Denmark

The Danish subsurface is divided into five major structural parts: the
North German Basin, the Ringkøbing–Fyn High, the Danish Basin, the
Sorgenfrei–Tornquist Zone and the Skagerrak–Kattegat Platform
(Fig. 1) (Mathiesen et al., 2010). These structural divisions are a deci-
sive factor on the geothermal exploration in the Danish subsurface
(Nielsen, 2003; Nielsen et al., 2004). The Mesozoic succession has been
the main geothermal target and the most promising reservoirs occur

within the Triassic–Lower Cretaceous succession in the Danish Basin
and the North German Basin (Balling et al., 2002; Mathiesen et al.,
2010). Four main stratigraphic units with a regional geothermal po-
tential have been identified: the Lower–Upper Triassic Bunter Sand-
stone and Skagerrak Formation, the Upper Triassic–Lower Jurassic
Gassum Formation, the Middle Jurassic Haldager Sand Formation and
the Upper Jurassic–Lower Cretaceous Frederikshavn Formation
(Nielsen et al., 2004; Vosgerau et al., 2016).

Due to the complex dependence on burial history, lithofacies, and
mineralogical composition, the depth trends of porosity and perme-
ability, and consequently the quantification of storage and flow abilities
of geothermal waters, are often uncertain (Kristensen et al., 2016;
Weibel et al., 2017), which may reduce the predictive strength of the
current geological models for identifying the areas of interest. In order
to provide essential information for reservoir indications and mitigate
prediction uncertainties, advanced methods to estimate reservoir li-
thofacies and porosity based on seismic inversion results are necessary.

Combining statistical models and deep-learning methods, this study
is focused on a geothermal exploration project at the Hillerød area,
north of Copenhagen, which is close to the Margretheholm plant
(Fig. 2). The Hillerød area is located in the eastern part of the Danish
Basin, with the Gassum Formation as the primary reservoir target
(Nielsen, 2003), and the reservoir rocks are predominantly moderately
sorted, fine- to medium-grained sandstone. This formation is already
being exploited in the geothermal district heating plants at Thisted and
Sønderborg (Røgen et al., 2015) (Figs. 1 and 2). Overlain on the Gassum
Formation, the sandstone-dominated Lower Jurassic Reservoir Unit
(LJRU) is the second reservoir target (Bredesen et al., 2020; Feng,
2020). As shown by samples and logs from local wells, the LJRU con-
tains relatively homogeneous reservoir rocks, whereas the Gassum
Formation is more heterogeneous with interbedded thin shales. The
thermal waters are characterized by low-to-average temperatures
(40–90 °C) within this area (Fuchs et al., 2020). Therefore, seismic data
are more suitable than MT data, of which the latter one is applicable to
reservoirs of high-temperature thermal waters (> 100 °C).

3. Methodology

The Methodology includes two main parts: the lithofacies classifi-
cation and the porosity prediction.

3.1. ANN-HMM for lithofacies classification

Artificial Neural Networks (ANN) is one of the most popular deep-
learning tools for classification problems. ANN is represented by hidden
layers and neurons, with activation functions embedded (Saggaf et al.,
2003), and is used to describe the highly complex relationship between
input features and output targets. The relationship is honored in-
dependently at each spatial location, which means that the algorithm
does not account for the spatial correlations within the data. On the
other hand, Hidden Markov Models (HMM) is a geostatistical method
commonly applied to mimic the distribution of spatial patterns. HMM
can decode the natural ordering of spatially distributed random vari-
ables based on indirect observations (Rabiner, 1989). Typically, in
HMM, a Gaussian assumption is made to describe the relationship be-
tween the categorical latent variables and the observations, which may
be insufficient.

In order to address these problems in ANN and HMM, here, we
propose a new system: Artificial Neural Networks-Hidden Markov
Models (ANN-HMM) for the classification of categorical hidden states
(lithofacies, in our application) based on observations represented by
continuous variables (elastic attributes, in our case), as shown in Fig. 3.

There are three parameters in ANN-HMM:

= A B Cλ { , , } (1)

The transition matrix A contains the conditional probabilities
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between different states or lithofacies (S) at adjacent spatial locations
along the vertical direction and is generally obtained from a scanning of
known lithofacies at well locations:
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where aij specifies the transitional probability from state Si to state Sj
( = ⋯S S SS { , , , }m1 2 , m is the total number of categorical lithofacies).

The stationary probability (i.e. the global proportion) of the litho-
facies— B is derived by taking the limit of transition steps ( f ) in matrix
A (Eq. (2)) to an infinite number (Elfeki and Dekking, 2001):
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(3)

in which, i disappears because the stationary probability does not de-
pend on the starting states, and bj is one element in B ( =B b{ }j ).

The emission or likelihood probability C ( Y SPr( | )) is the connection

Fig. 1. Distribution of potential geothermal reservoirs in Denmark (modified from Mathiesen et al., 2010).

Fig. 2. Map of geothermal plants and location of the study area for the geothermal reservoir characterization (Bredesen et al., 2020).
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between observations Y (elastic attributes) and states S (lithofacies),
and can be estimated from logging data. In HMM, means and covar-
iances in Gaussian functions are used to provide this value, which are to
be replaced by weights and biases of hidden neurons from ANN (the left
part in Fig. 3). In particular, the multilayer perceptron (MLP), a specific
configuration of ANN, is used to describe this relationship.

The system must be trained using direct measurements of the
properties of interest. Input features (Xi) such as AI and Vp/Vs, are fed
into the neural architecture (left part in Fig. 3). Based on the target
variables (lithofacies), weights and biases in the hidden neurons (hi) of
ANN are updated to minimize a pre-defined error function.

In the classification process, the so-calibrated algorithm can then
calculate the output probability S YPr( | ) of ANN using a softmax func-
tion (Goodfellow et al., 2016), with inputs of logging data or seismic
inversion. Without prior information (A and B in Eq. (1)), the classified
result from S YPr( | ) by selecting lithofacies of the highest probability
value is a degenerated case of ANN-HMM. Then, according to the Bayes’
theory (Scales and Snieder, 1997; Ulrych et al., 2001; Calvo-Zaragoza
et al., 2019), the emission probability C ( Y SPr( | )) can be obtained:

= ∣ = ∣ ∝ ∣C Y S S Y Y
S

S Y
S

Pr( ) Pr( )Pr( )
Pr( )

Pr( )
Pr( ) (4)

where S YPr( | ) is the output of ANN, as calculated by the softmax
equation; YPr( ) is a constant from independent observations; SPr( ) is
assumed to be equal by the relative frequencies of lithofacies in the
training dataset, which is similar to the global proportion of lithofacies
(B) (Eq. (3)). However, in order to keep things analytically tractable, a
distinction is made for them.

After a complete definition of the model λ , the Viterbi algorithm
(Viterbi, 1967) is applied for the decoding task of hidden lithofacies.
Making using of a dynamic programming trellis along the vertical path,
the most probable sequence of states = ⋯Q q q qn1 2
( = ≤ ≤ ≤ ≤q S d n i m, 1 , 1d i , n is the total number of data points and
m is total number of lithofacies), is able to be found from a backtracing
step. For implementation details of the Viterbi method, please refer to
Rabiner (1989).

3.2. Lithofacies-dependent ANN for porosity prediction

In the second step of the proposed characterization process, we
predict the special distribution of porosity conditioned by elastic at-
tributes and lithofacies, with the goal to quantify the volume of geo-
thermal waters and the link with rock permeability (Fang and Yang,
2015). The relationship between porosity and elastic properties is
generally facies-dependent and non-linear, which makes the solution of
the inverse problem non-unique. In general, the uncertainty in the
porosity prediction is relatively large when only elastic properties are
considered. However, due to the intrinsic petrophysical characteristics
of lithofacies, a less uncertain porosity estimation can be achieved by
introducing the facies-dependent relations.

In this present approach, we propose to predict reservoir porosity
based on the inverted seismic attributes, with a constraint imposed by
the classified lithofacies from ANN-HMM. The porosity inversion is
obtained by applying ANN with the sigmoid activation function adopted
to extract the complex relationship between input rock properties (AI
and Vp/Vs) and target porosities in a regression process, within each
lithofacies.

4. Real case study

4.1. Lithofacies classification

The proposed method is applied to a real dataset from an onshore
potential geothermal reservoir, north of Copenhagen, Denmark
(Hillerød area in Fig. 2). Five 2D seismic lines have been acquired
across the area and a borehole, namely the Karlebo well, is drilled in the
vicinity of line No. 5 (Fig. 2). The Margretheholm well (part of the
Margretheholm geothermal plant) is approximately 40 km away from
the Karlebo well and presents similar depositional environments and
reservoir features (Vosgerau et al., 2016, 2017). A preliminary seismic
inversion was performed to predict elastic attributes of line No. 5, and
two rock properties (AI and Vp/Vs) are estimated.

At the Margretheholm and Karlebo well locations, rock properties
are calculated from sonic and density logs, and lithofacies profiles are
available (Fig. 4a and b). Shale, Shaly Sand, and Sand have been
identified based on an interpretation of the Gamma Ray log, sedi-
mentological and depositional rules. The lithofacies-dependent bi-
variate joint distribution of elastic properties is displayed in Fig. 4c.
Sand and Shaly Sand show skewed marginal distributions, whereas
Shale has a bimodal behavior probably due to different mineral com-
positions at the top and bottom of the interval (Fig. 4a and b). Sand and
Shaly Sand also have a large overlap because of similar rock properties.

The proposed ANN-HMM is trained using AI, Vp/Vs and reference
lithofacies from the two wells. Both datasets are used simultaneously in
the workflow to represent the variability of the data and increase the
amount of information available to extract the non-linear relationship
between model variables and measured data.

Then, to validate the method, AI and Vp/Vs log data of the
Margretheholm well are used for the classification of lithofacies at the
well location. The classified lithofacies by the Viterbi decoding in ANN-
HMM are shown in Fig. 5. Results obtained by applying ANN and HMM
independently are also displayed. In ANN, lithofacies of the highest
value in the softmax function are assigned along the vertical profile. The
same Viterbi method is used in HMM as well, where C (the likelihood)
is calculated by the Gaussian function that is replaced by trained
weights and biases in ANN-HMM. Note that the classification in ANN-
HMM and HMM is performed from the bottom to the top, as illustrated
by vertical arrows in qi (Fig. 3), in order to fully honor a depositional
process. The Matthews correlation coefficient (MCC) is adopted to
quantify the performance of different classifiers (Matthews, 1975). It is
computed based on a multiclass confusion matrix and the value is be-
tween -1 and 1, where -1 represents an inverse outcome between truth
and prediction, and 1 means a perfect classification. The MCC value for

Fig. 3. Proposed method for lithofacies classification: Artificial Neural
Networks-Hidden Markov Models (ANN-HMM). Xi is the ith input feature such
as AI or Vp/Vs; hi is the ith neuron in hidden layers; S YPr( | ) tells the output
probability of lithofacies or states (S) given observations (Y) ( = XY { }i , a
combination of the input features), without any Markov prior information; qd
represents the depth point (d) at which its state needs to be decoded; SPr( ) is the
relative frequencies of states (S) in the training dataset; A and B are the priors;
C stands for the emission (likelihood) function which describes the distribution
of Y given S.
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ANN is 0.5954; HMM: 0.5399; ANN-HMM: 0.6261. Therefore, the result
obtained by ANN-HMM is more accurate than the ones by the other two
traditional approaches. As a probability curve, ROC (Receiver Oper-
ating Characteristics) could also be utilized to measure the classifiers’
performances, at various thresholds. However, the Viterbi path in ANN-
HMM and HMM does not estimate a posterior probability, which makes
the ROC analysis inapplicable here.

We then apply the method for lithofacies classification to the
Karlebo location and make a comparison with other traditional ap-
proaches as well (Fig. 6). In HMM, wrong classifications of Shale as
Shaly Sand can be observed from 2020m to 2110m. Similarly, between
1950m and 2000m the algorithm over-predicts the Sand proportion.
This is probably due to the non-stationarity of the reference data that
cannot be accounted for by a first-order Markov chain model, as well as

Fig. 4. Elastic properties (AI and Vp/Vs) and reference lithofacies from geological interpretations (“Truth”) at the (a) Margretheholm and (b) Karlebo well. (c)
Lithofacies-dependent bivariate joint distribution of elastic properties (Shale in green, Shaly Sand (SH_Sand) in brown, and Sand in yellow). On the horizontal plane,
contour plots of the approximate Gaussian distributions are shown. On the vertical planes, the smoothed univariate marginal distributions are displayed per each
lithofacies. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Classification results of ANN, HMM and ANN-HMM applied to elastic properties at the Margretheholm well in Fig. 4a.
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the insufficient Gaussian assumption. In ANN, the result is overall more
accurate than that by HMM, despite some misclassifications of thin
interbedded layers in the two Sand reservoir units. The combined ANN-
HMM further improves the classification result. The MCC value for
ANN is 0.7798; HMM: 0.4227; and ANN-HMM: 0.7954.

To test the validity of the method at the seismic scale, we also apply

the classification to the upscaled well logs of Margretheholm and
Karlebo at the seismic resolution that is 1/4 of wavelength. A sequential
Backus averaging is used to upscale the log data and the most frequent
lithofacies in a running window are chosen along the vertical direction
(Lindsay and Koughnet, 2001; Avseth et al., 2005). Fig. 7 shows the
upscaled logs (AI and Vp/Vs), the upscaled reference profiles (“Truth”)

Fig. 6. Classification results of ANN, HMM and ANN-HMM applied to elastic properties at the Karlebo well in Fig. 4b.

Fig. 7. (a) Upscaled logs and (b) predicted lithofacies at the Margretheholm well. (c) Upscaled logs and (d) predicted lithofacies at the Karlebo well.
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and the classified lithofacies obtained by ANN, HMM and ANN-HMM,
from which it can be seen that ANN-HMM achieves a better perfor-
mance at the seismic scale as well, compared with ANN and HMM. At
the Margretheholm well, the MCC value for ANN is 0.5388; HMM:
0.4868; ANN-HMM: 0.5436, and it is 0.5608 for ANN; 0.5033 for HMM;
0.6642 for ANN-HMM at the Karlebo well.

Finally, the lithofacies classification is applied to the inverted elastic
properties (AI and Vp/Vs) from seismic data, which are independent
from the training datasets before. An AVO (amplitude versus offset)
inversion scheme is employed on offset gathers (Mallick and Adhikari,
2015) and it is based on the Aki-Richards linear approximation of
Zoeppritz equations (Aki and Richards, 2002) where the reflection

coefficients are expressed as a function of incident angles. AI is related
to the intercept at the near-zero offset in the AVO curve, and Vp/Vs is a
function of the gradient which requires intermediate-far offsets. The
inverted elastic properties of AI and Vp/Vs at the Karlebo well are
displayed in Fig. 8.

Based on the inverted elastic properties in Fig. 8, the proposed ANN-
HMM is applied and the classified lithofacies are shown in Fig. 9, to-
gether with the results by ANN and HMM as well. It can be observed
that ANN-HMM performs better than ANN, and among the three, the
result by HMM is the worst (ANN: 0.3610; HMM: 0.1871; ANN-HMM:
0.4399, for MCC values). It should be pointed out that the MCC value
represents a quality index for the classification performance in the
entire interval. Due to the mismatch between the true and inverted rock
properties (Fig. 8), these values are relatively low. In Fig. 9, the pro-
portions of Sand and Shaly Sand are slightly over-estimated by ANN-
HMM, compared with the ones by ANN; however, its MCC value is still
higher than the corresponding index for ANN.

Confusion matrices showing the success and failure rates of classi-
fications in each lithofacies are presented in Fig. 10. Along the diagonal
space, the correctly classified data samples and their corresponding
percentages are shown, in which a perfect classification should have a
score of 100 %. Classified samples are considered as suboptimal, if they
are close to the diagonal, such as Shaly Sand predicted as Sand. The off-
diagonal elements represent the worst misclassifications and are ex-
pected to have a value of 0 %. ANN and ANN-HMM have a similar
performance for the classification of Sand. Compared with ANN, more
Shale have been predicted as Shaly Sand in ANN-HMM, which are
mediocre. For Shaly Sand, ANN-HMM can achieve a higher success rate
than ANN. The classification ratio by HMM is the worst because of the
distributed data samples across the truth and the prediction categories.

From the AVO inversion of cross-section seismic data (Fig. 11a),
inverted AI and Vp/Vs (Fig. 11b) are obtained and then used as inputs
for the classification of lithofacies (Fig. 11c). The result of ANN-HMM is
recovering the major characteristics of the subsurface, such as the
boundary of Top Gassum between Sand and Shaly Sand, and the com-
plex geological structures are honored.

4.2. Porosity prediction

The porosity distribution based on rock properties suffers the pro-
blem of non-uniqueness, and there is a large overlap between the high-
porosity reservoir unit and the low-porosity non-reservoir unit
(Fig. 12a). In this proposed method for porosity prediction, the above
classified lithofacies are included as a constraint to improve the pre-
diction accuracy and reduce the uncertainty (Fig. 12b).

Fig. 8. Inverted rock properties at the Karlebo well. Blue lines represent the
inverted results, and red lines are the upscaled logs. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 9. Classification results by ANN, HMM and ANN-HMM applied to seismically inverted elastic properties (Fig. 8) at the Karlebo well.
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Instead of using typical rock-physical models (Avseth et al., 2010),
ANN is applied with the sigmoid function embedded to derive the un-
known yet complex relationship between elastic properties (AI and Vp/
Vs) and reservoir porosity, in a fully data-driven way. Three different
networks for Shale, Shaly Sand and Sand are designed and in-
dependently trained using lithofacies-dependent elastic properties from
the wells. Then, these trained ANNs are used for the prediction of re-
servoir porosity with previously classified lithofacies as additional
constraints, based on the elastic inversion results. In Fig. 13, the pre-
diction quality of porosity is improved after including the constraint of
lithofacies (plots b–d), compared with the porosity prediction in-
dependent from the lithofacies classification (plot a). The improved
predictions are also shown by an increase of correlation coefficient
between the prediction and the reference porosity, of which the pre-
dicted porosity constrained with ANN-HMM classified lithofacies is the
best (Fig. 13d).

The predicted porosity along the seismic cross section is shown in
Fig. 14. With constraints of the lithofacies by ANN-HMM (Fig. 11c), the
result has more geologically realistic continuity inside the Lower Jur-
assic Reservoir Unit (LJRU) Formation, which makes that overall the
LJRU Formation has a better reservoir quality than the underlied
Gassum Formation. For Fjerritslev and Vinding Formations, they are
associated with Shale and Shaly Sand, which are the confining rock
units (Fig. 11c).

5. Discussion

In this study, the reservoir lithofacies is classified using a new
system combining ANN and HMM. Subsequently, the porosity is pre-
dicted by a totally data-driven ANN, with a constraint of previously
classified lithofacies.

Belonging to the deep-learning methods, ANN is a non-parametric
approach that can overcome the Gaussian assumption of many statis-
tical algorithms, leading to a more accurate description of the complex
distribution of reservoir properties. To impose the spatial continuity
model observed in the reference data, ANN is integrated with HMM

using the Viterbi algorithm to classify spatially correlated lithofacies.
Then, with a constraint of lithofacies, uncertainty in the prediction of
porosity could be largely reduced, and complicated data distributions
are modeled by ANN. Hence, ANN has been applied for the classifica-
tion (discrete lithofacies) and regression (continuous porosity) pro-
blems in a two-step procedure, in which different activation functions
have been selected, such as softmax and sigmoid (Goodfellow et al.,
2016). Other types of neural networks such as Convolutional Neural
Networks or Recurrent Neural Networks could also be used (Grana
et al., 2020).

The new ANN-HMM integrates the information from the data with
the knowledge from the transition matrix, which has the function to
preserve the geological realism of the classification by imposing the
estimated transition probability. In complex geological environments,
with alternating sequences of thin and thick layers, some of the thin
layers (below the data resolution) might be miss-predicted due to
constraints imposed by the transition matrix of the Markov chain in the
facies classification. A potential solution would be to divide the inter-
vals of interest into multiple layers and apply the method with different
transition matrices. When associated emission probabilities of the li-
thofacies in thin layers are high enough, these thin layers can be cor-
rectly predicted, such as the ones in Fig. 6 (ANN-HMM, around
1900m).

To train the neural part in ANN-HMM, well log data have been
randomly split into training (80 %), development (dev) (10 %) and test
(10 %) subsets. ANN shares the same parameters with ANN-HMM in
terms of neural weights and biases. HMM accounts for prior informa-
tion (A and B), while a Gaussian assumption is made to estimate means
and covariances for C (Eq. (1)), instead of hidden neurons assigned in
ANN-HMM. For ANN used in the porosity prediction, the same ratio
between training, dev and test (80-10-10 %) datasets is adopted for
rock properties within each lithofacies (three neural networks corre-
sponding to three lithofacies (Sand, Shaly Sand and Shale), in this case).
Then, these subsets are combined individually to train the fourth ANN
without any discrimination of lithofacies types, as applied in Fig. 13a.

In the proposed workflow, an accurate lithofacies classification is

Fig. 10. Confusion matrices of ANN, HMM and ANN-HMM. Black background color represents a higher classification score.
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essential for a successful prediction of the reservoir porosity, since li-
thofacies are used as a constraint in the porosity prediction. Large
overlaps between Sand and Shaly Sand are observed (Fig. 4c), leading
to a difficult discrimination in the presented application. Thus, in

complex geological scenarios with large facies overlaps, additional
geophysical measurements such as large-offset seismic data or con-
trolled-source electromagnetic data might be necessary such that other
rock properties, like density or resistivity can be included in the

Fig. 11. (a) Cross section of seismic data along survey line No. 5 (Fig. 2); (b) Elastic inversion results in terms of AI and Vp/Vs; (c) Classified lithofacies by applying
ANN-HMM trace-by-trace. CDP means common-depth point. True rock properties and reference lithofacies at the Karlebo site are superposed on the inverted (b) and
classified (c) results (red lines). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 12. Crossplots between rock properties (AI and Vp/Vs) and the color is coded by porosity. (a) The back region shows the high-porosity reservoir unit that
overlaps with the low-porosity non-reservoir unit; (b) Lithofacies-dependent crossplots to increase the porosity discrimination.
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inversion algorithm.
To make results comparable to the seismic data (Fig. 11a), classified

lithofacies (Figs. 9 and 11c) and predicted porosity (Figs. 13 and 14)
based on inversion results (Figs. 8 and 11b) are in the time domain. The
depth-to-time conversion was performed using a smooth velocity
model. Well log and seismic data were also pre-processed to remove the
systematic noises. Angle-dependent wavelets were statistically ex-
tracted based on seismic data for the spectral amplitude, whereas the
phase was estimated from the well log reflectivities (Edgar and van der
Baan, 2011). All these processing steps include approximations and
might be uncertain.

Future research could include the horizontal correlations between
lithofacies as shown in Middleton (1973) and Feng et al. (2018b).
Furthermore, the estimation of permeability would be incorporated as
well. As another important reservoir parameter, the permeability in-
dicates pore connections in the subsurface. A significant amount of core
data analysis on the relationship between the rock porosity and the
hydraulic permeability is available for most of the Danish potential
geothermal reservoirs (Kristensen et al., 2016; Weibel et al., 2017).
Despite complex relationships, the porosity could be considered as a
good hint of the permeability, and together with the reservoir thickness,
information on the geothermal production potential is able to be in-
ferred. For the present case study, our results clearly indicate the ex-
istence of sandstone units with a sufficient porosity (about 20 % or
more) and the significant lateral extent for high-quality geothermal
reservoir conditions.

6. Conclusion

A new procedure is proposed to classify the lithofacies based on
seismic inversion results for a geothermal reservoir study in Denmark.
Combining Artificial Neural Networks and Hidden Markov Models
(ANN-HMM), the method overcomes the common assumption of
Gaussian distributions in elastic properties and imposes a spatial cor-
relation model on the vertical sequence of lithofacies using Markov
transition probabilities. Next, the reservoir porosity is predicted using
Artificial Neural Networks based on seismically inverted elastic attri-
butes, with an additional constraint provided by classified lithofacies
from ANN-HMM. This sequentially integrated approach reduces the
uncertainty in the prediction of reservoir properties and improves the
accuracy of the reservoir characterization. Using inversion results from
seismic data, the characterization process could be performed away
from well locations. As a result, potential geothermal reservoir units are
identified in 2D sections.
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Fig. 13. Predicted porosities based on elastic
inversion results at the Karlebo well (Fig. 8).
The first plot (a) shows the prediction result
without the use of lithofacies. The prediction
results with the constraint imposed by classi-
fied lithofacies from ANN, HMM, ANN-HMM
(Fig. 9) are displayed in plots from (b) to (d).
The upscaled reference lithofacies and porosity
are shown in (e). Red line represents the up-
scaled porosity (based on the density log) and
blue line is the prediction. The correlation
coefficient between predicted and upscaled
porosities is: 0.2234, 0.5095, 0.4320 and
0.6180 in plots from (a) to (d). (For inter-
pretation of the references to colour in this
figure legend, the reader is referred to the web
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Fig. 14. Predicted porosity along the seismic line No. 5 (Fig. 2), with lithofacies constraints from ANN-HMM. Porosity at the Karlebo well is superposed on the cross
section, as represented by the red line. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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