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ABSTRACT

Stochastic petrophysical inversion is a method used to pre-
dict reservoir properties from seismic data. Recent advances in
stochastic optimization allow generating multiple realizations
of rock and fluid properties conditioned on seismic data. To
match the measured data and represent the uncertainty of
the model variables, many realizations are generally required.
Stochastic sampling and optimization of spatially correlated
models are computationally demanding. Monte Carlo methods
allow quantifying the uncertainty of the model variables but
are impractical for high-dimensional models with spatially cor-
related variables. We have developed a Bayesian approach
based on an efficient implementation of the Markov chain
Monte Carlo (MCMC) method for the inversion of seismic

data for the prediction of reservoir properties. Our Bayesian
approach includes an explicit vertical correlation model in
the proposal distribution. It is applied trace by trace, and
the lateral continuity model is imposed by using the previously
simulated values at the adjacent traces as conditioning data for
simulating the initial model at the current trace. The method-
ology is first presented for a 1D problem to test the vertical
correlation, and it is extended to 2D problems by including
the lateral correlation and comparing two novel implementa-
tions based on sequential sampling. Our method is applied to
synthetic data to estimate the posterior distribution of the pet-
rophysical properties conditioned on the measured seismic
data. The results are compared with an MCMC implementation
without lateral correlation and demonstrate the advantage of
integrating a spatial correlation model.

INTRODUCTION

One of the main goals of reservoir characterization is to build mod-
els of petrophysical properties, including porosity, mineralogy, and
fluid saturations. The available data include direct measurements
of the petrophysical properties of interest at sparse well locations,
namely, well logs, and indirect measurements of their geophysical re-
sponse measured at the surface, namely, seismic surveys. Petrophys-
ical properties can be predicted from well log and seismic data by
combining inverse theory with geophysical equations such as seismic
and rock-physics modeling (Aki and Richards, 1980; Avseth et al.,
2010; Mavko et al., 2020). If the petrophysical properties are known,
then the seismic response can be computed using rock physics and
seismic models. Because the petrophysical properties are unknown
and the seismic response is measured, the modeling problem is for-
mulated as an inverse problem. Deterministic methods such as gra-
dient-based approaches can be applied to predict the petrophysical

properties. However, the solution, i.e., the model of petrophysical
properties, is not unique due to the presence of noise in the data, lim-
ited resolution of the seismic data, and the approximations of the
physical operators linking the model to the measured data. Probabi-
listic methods are then preferable because they provide a prediction of
the most likely model and its uncertainty. The solution of the prob-
abilistic inverse problem can be expressed using probability distribu-
tions or multiple model realizations. Doyen (2007), Bosch et al.
(2010), Azevedo and Soares (2017), and Grana et al. (2021) provide
a review of the main seismic reservoir characterization methods de-
veloped for hydrocarbon reservoirs.
Bayesian inversion methods for seismic and petrophysical inver-

sion have been proposed in geophysics literature (Tarantola and Val-
ette, 1982; Sen and Stoffa, 1996; Scales and Tenorio, 2001; Ulrych
et al., 2001; Buland and Omre, 2003; Tarantola, 2005). For example,
Buland and Omre (2003) derive an efficient solution for seismic in-
version for the prediction of elastic properties (i.e., velocities or
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impedances), but their approach requires the linearization of the
forward operator. Their approach has been extended to petrophysical
inversion and lithofluid classification (Larsen et al., 2006; Buland
et al., 2008; Grana and Della Rossa, 2010; Ulvmoen and Omre,
2010; Rimstad et al., 2012; Grana, 2016; Jullum and Kolbjørnsen,
2016; Grana et al., 2017). However, rock-physics models are gener-
ally nonlinear, and their linearization might lead to inaccurate predic-
tions, for example, for fluid saturations. Furthermore, sampling the
posterior distribution of the petrophysical variables presents several
challenges because petrophysical properties are bounded between
zero and one, multimodal, and spatially correlated due to geologic
continuity. Pioneering works on the use of geostatistical sampling
methods include Doyen (1988), Bortoli et al. (1993), and Haas
and Dubrule (1994). Geostatistical inversion methods based on sto-
chastic sampling have been later developed in several publications
(Soares et al., 2007; González et al., 2008; Grana et al., 2012; Jeong
et al., 2017; Azevedo et al., 2015, 2020; de Figueiredo et al., 2019a,
2019b; Cyz and Azevedo, 2020).
The application of stochastic inversion methods to geophysical

problems for the prediction of petrophysical variables is challenging
due to non-Gaussian distributions, spatial correlation, and data con-
ditioning. Markov chain Monte Carlo (MCMC) are statistical algo-
rithms to sample the probability distribution of a random variable and
can be applied to geophysical inverse problems to sample the pos-
terior distribution of the model variables conditioned on the measured
data (Mosegaard and Tarantola, 1995; Sambridge and Mosegaard,
2002). Mukerji et al. (2001) and Eidsvik et al. (2004) adopt an
MCMC approach to compute the posterior model of the reservoir
variables conditioned on the available observations and predict the
lithofluid facies in the reservoir. The approach is applied using a cat-
egorical variable with a finite number of facies values. Hansen et al.
(2012) and Zunino et al (2015) present MCMC methods that effi-
ciently incorporate complex prior models into the inverse problem.
Connolly and Hughes (2016) present a Monte Carlo approach in
which realizations are sampled from a prior distribution and accepted
or rejected based on the data mismatch. The method includes a ver-
tical correlation model and a Markov chain for the categorical var-
iable, but it does not include a lateral continuity model. De Figueiredo
et al. (2019a, 2019b) present an MCMC method that can be applied
to discrete and continuous variables and include a spatial correlation
model, but the convergence for nonlinear models is much slower than
for the linear case. Similarly, Aleardi and Salusti (2020a, 2020b)
present different formulations of the MCMC approach using different
prior distributions and probability ratios. Non-Bayesian seismic and
petrophysical inversion methods have also been applied, using non-
linear regressions, gradient-based optimization, or deep-learning
algorithms (Priezzhev et al., 2019; Babasafari et al., 2021).
We propose an MCMC method for the joint prediction of petro-

physical properties, for example, porosity and water saturation, con-
ditioned on partially stacked seismic data. The methodology is based
on a 1D implementation, in which the petrophysical properties are
iteratively simulated from multivariate distributions with a vertical
correlation model to match the measured data. We then propose
an efficient implementation of the MCMC method for 2D applica-
tions by adopting a sequential approach based on the 1D sampling
MCMC approach with a local preconditioning prior model depend-
ing on the previously inverted traces. We introduce two different im-
plementations in which the local preconditioning prior model is
based on kriging and sequential sampling, respectively, to impose

the lateral correlation model in the solution. The method is demon-
strated in 1D and 2D petrophysical inversion problems and estimates
the posterior distribution of the petrophysical variables conditioned
on the seismic data.

METHODOLOGY

We formulate the inverse problem in a general way such that it
can be applied to any set of model variables and any geophysical
data for which the forward problem is known. Given a set of mea-
surements d, we aim to predict the model variablesm that generated
the measurements based on the geophysical function f∶Rnm → Rnd

that approximates the physical processes as

d ¼ fðmÞ þ ε; (1)

where ε represents the error in the data. In this formulation, we as-
sume that the error due to the approximations of the physical models
is negligible compared to the data error; however, the approach
could be extended to modeling errors as shown in Hansen et al.
(2014). The geophysical operator f is assumed to be nonlinear.
We focus on petrophysical inversion problems, where m represents
the porosity and water saturation, d represents the partially stacked
seismic data, and f is a function that combines the seismic ampli-
tude-variation-with-offset model with a rock-physics model. We
also assume that model variables and data are represented by vec-
tors of finite length; therefore,m is a vector of length nm and d and ε
are vectors of length nd. For 1D univariate applications, nd is the
number of samples of the seismic trace, and nm ¼ nd þ 1, whereas
for multivariate applications, nd depends on the number of samples
and the number of angle stacks, and nm depends on the number of
samples and the number of variables. For 2D and 3D applications,
nd and nm also depend on the number of seismic traces. The errors
are assumed to be independent and Gaussian distributed with mean
0 and covariance matrix Σε. If the seismic errors are assumed to be
spatially uncorrelated, the covariance matrix Σε is then diagonal,
whereas, in the general case, Σε is a full matrix that depends on
the spatial correlation model of the error.
The probabilistic solution of the inverse problem is the posterior

probability density function (PDF) commonly called the posterior
distribution PðmjdÞ that, according to Bayes’ rule, is proportional
to the likelihood function PðdjmÞ and the prior PDF or prior dis-
tribution PðmÞ:

PðmjdÞ ¼ PðdjmÞPðmÞ
PðdÞ ; (2)

where PðdÞ is a constant. In the linear-Gaussian case (univariate or
multivariate), the solution of the inverse problem can be estimated
analytically (Buland and Omre, 2003; Tarantola, 2005; Hansen
et al., 2006), whereas in the nonlinear case the solution must be
assessed numerically.
We assume that the prior PDF of the model variable m (i.e., the

vector of the model variables at the spatial locations of interest) is
Gaussian N ðm;μm;ΣmÞ with locally variable prior mean μm and
spatially correlated prior covariance matrix Σm. The prior mean μm

is assumed to be given by a low-frequency background trend based
on prior geologic information, whereas the prior covariance matrix
Σm is obtained by combining the stationary (spatially indepen-
dent) covariance matrix Σ0

m of the model variables and the vertical
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correlation matrix Σt associated with correlation function υðtÞ, for
example, using the Kronecker product Σ0

m ¼ Σ0
m ⊗ Σt. The likeli-

hood function of djm is assumed to be Gaussian N ðd; fðmÞ;ΣεÞ
with mean fðmÞ and spatially independent covariance matrix Σε.
Because the forward operator f is not linear, the resulting posterior
distribution ofmjd is not Gaussian and must be assessed numerically.
MCMC algorithms are iterative methods in which the solution is

updated at each iteration. After an initial burn-in period, the models
asymptotically sample solutions with high likelihoods and prior prob-
abilities. The set of realizations after the burn-in period is used to
estimate the posterior distribution of the model variables conditioned
on the available data. At the first iteration, the model realizationm0 is
sampled from a prior distribution, whereas at the following iterations,
the proposed model realization mi is sampled from a proposal dis-
tribution conditioned on the model mi at the previous iteration. At
each iteration, the proposed realization is accepted or rejected based
on the ratio of their conditional distributions conditioned on the data.
Several algorithms have been presented in statistics literature with
different formulations of the acceptance probability ratio and differ-
ent proposal distributions. Popular MCMC methods for seismic in-
version problems include the Metropolis and Metropolis-Hastings
algorithms. In the Metropolis-Hastings approach, the proposed reali-
zation m 0 is drawn from a proposal distribution gðm 0jmiÞ and ac-
cepted with probability p:

p ¼ min

�
Pðdjm 0ÞPðm 0Þgðmijm 0Þ
PðdjmiÞPðmiÞgðm 0jmiÞ

; 1

�
: (3)

In the Metropolis approach, the proposed realization m 0 is drawn
from a proposal distribution where gðm 0jmiÞ ¼ gðmijm 0Þ and the
acceptance probability p becomes

p ¼ min

�
Pðdjm 0ÞPðm 0Þ
PðdjmiÞPðmiÞ

; 1

�
: (4)

At each iteration, we generate a random number u from a uniform
distribution in [0, 1]. If u < p,m 0 is accepted as a new configuration
of the chain; otherwise, m 0 is rejected. It is common to assume the
Gaussian PDF for the proposal distribution for its analytical formu-
lation. The proposal distribution can also include a spatial correlation
model to mimic the spatial variations of rock and fluid properties.
Random realizations of the model variables can be efficiently gen-
erated using geostatistical methods to include spatial correlationmod-
els (Deutsch and Journel, 1998; Deutsch, 2002). We first formulate
the MCMC approach with vertical correlation for a 1D problem by
integrating vertical correlation models in the prior and proposal dis-
tribution.We then extend the approach to 2D problems by including a
lateral correlation model, using two implementations based on krig-
ing and sequential methods.

1D case

We assume a prior Gaussian distribution N ðm; μm;ΣmÞ with
locally variable prior mean μm and spatially correlated prior
covariance matrix Σm ¼ Σ0

m ⊗ Στ. The likelihood function of
the data d is GaussianN ðd; fðmÞ;ΣεÞ with vertically independent
errors. In the MCMC, the proposal distribution is assumed to be
Gaussian N ðm0; μmi

; αΣmÞ, where the mean μmi
is the proposed

model at the previous iteration and the covariance matrix depends
on an inflation factor α < 1. Then, the acceptance probability p in

equation 4 becomes

p ¼ min

�
exp

�
−
1

2
ðF likeðm 0Þ − F likeðmiÞÞ

�

× exp

�
−
1

2
ðF priorðm 0Þ − F priorðmiÞÞ

�
; 1

�
(5)

with likelihood and prior functions given by

F likeðmÞ ¼ ðfðmÞ − dÞTðΣε ⊗ I ndÞ−1ðfðmÞ − dÞ; (6)

F priorðmÞ ¼ ðm − μmÞTðΣ0
m ⊗ ΣtÞ−1ðm − μmÞ; (7)

where f is the geophysical forward operator in equation 1.
The spatially dependent correlation matrix Σt is assumed to be a

band matrix based on a prior vertical correlation function vðtÞ of
correlation length tl and can be written as

Σt ¼

2
66666666666664

1 : : : vðtlÞ : : : : : : : : : 0

..

. . .
. ..

. . .
. ..

. ..
. ..

.

vðtlÞ ..
.

1 ..
.

vðtlÞ ..
. ..

.

..

. . .
. ..

. . .
. ..

. . .
. ..

.

..

. ..
.

vðtlÞ ..
.

1 ..
.

vðtlÞ
..
. ..

. ..
. . .

. ..
. . .

. ..
.

0 : : : : : : : : : vðtlÞ : : : 1

3
77777777777775
: (8)

In this formulation, we assume that the errors are uncorrelated;
therefore, the covariance matrix of the data is written as
Σε ⊗ I nd ; however, a vertical correlation structure as in equation 8
could also be used for the data error.
In the 1D case, spatially correlated realizations can be efficiently

sampled from the proposal distribution N ðm 0;μmi
; αΣmÞ using the

lower–upper (LU) decomposition method (Deutsch and Journel,
1998; Deutsch, 2002). For an accurate and efficient implementation,
we calibrate parameter α to tune the variances and covariances of the
proposal distribution. If local variances are too large (α > 1Þ, a large
number of proposed models are rejected, whereas if the variances are
too small (α < 1Þ, the algorithm might require a large number of iter-
ations or the solution might depend on the initial model. For a de-
tailed discussion on the mathematical definition of optimal proposal
distributions, we refer the reader to Rosenthal (2011).
The approach in equations 5–8 can be extended to 2D problems,

but the convergence is generally slow. Therefore, we present two
approaches of a trace-by-trace inversion in which the lateral corre-
lation is imposed in the statistical model using the previously in-
verted traces. The first approach is based on a sequential random
path along the traces, and at each trace the prior model is computed
by solving a kriging interpolation problem using the previously in-
verted traces as conditioning data. The second approach is based on
a sequential raster (ordered) path along the traces, and at each trace
the prior model is computed by imposing a similarity measure with
the previously inverted adjacent trace.

Spatially correlated MCMC M15
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2D case using kriging

For the 2D case, we propose a sequential approach in which the
previously inverted traces are used as additional conditioning data.
The sequential approach can be based on a random path where the
traces are selected randomly or based on a raster path where the
trace is visited according to their spatial ordering. We reformulate
the problem in equation 2 according to a hierarchical formulation. If
m−x represents the model realizations at the previously inverted
traces, then equation 2 can be rewritten as

Pðmjd;m−xÞ ¼ Pðd;m−xjmÞPðmÞ
Pðd;m−xÞ

¼ PðdjmÞPðm−xjmÞPðmÞ
PðdÞPðm−xÞ

¼ PðdjmÞPðmjm−xÞ
PðdÞ (9)

assuming thatm−x and d are conditionally independent, givenm. In
the first proposed approach, m−x represents the previously inverted
traces in a selected neighborhood of the current trace and the prob-
ability Pðmjm−xÞ in equation 9 is computed using kriging with a
locally variable mean.
Kriging is a geostatistical method for the interpolation of spa-

tially correlated random variables (Deutsch and Journel, 1998;
Deutsch, 2002). Unlike other interpolations, kriging accounts for
the spatial configuration of the measurements and the spatial cor-
relation of the variables. The most common form of kriging is called
simple kriging, where we assume that the mean of the variable of
interest is known and constant in space. Given a random variable X
with mean μX and variance σ2X , and a finite number of measure-
ments fx1; : : : ; xng, the interpolated value xk0 is given by

xk0 ¼ μX þ
Xn
i¼1

wiðxi − μXÞ; (10)

where the vector of kriging weightsw ¼ ½w1; : : : ; wn�T is computed
by solving a system of linear equationsCw ¼ C0, where the kriging
matrix C contains the values Cðhi;jÞ of the spatial covariance func-
tion at the distances hi;j between the measurement locations,
whereas the kriging vector C0 contains the values Cðh0;iÞ of the
spatial covariance function at the distances h0;i between the meas-
urement location and the location of interest. The prediction error
can be quantified by the kriging variance:

σ20 ¼ σ2X −
Xn
i¼1

wiCðh0;iÞ; (11)

where σ2X is the prior variance of the variable X: In the proposed
method, we adopt kriging with a locally variable mean, where
the mean μX in equation 10 is spatially variable and it is assumed
to be equal to the pointwise mean of the prior distribution.
Based on equations 10 and 11, we compute the probability

Pðmjm−xÞ in equation 9. The prior distribution of the model at a
trace x is then a Gaussian distribution with mean μk

m and covariance
matrix Σk

m computed by applying kriging with a locally variable
mean to the predicted model values at the previous inverted traces.
The prior term Pðmjm−xÞ can then be written as

Pðmjm−xÞ ¼ c exp

�
−
1

2
ððm − μk

mÞTðΣk
mÞ−1ðm − μk

mÞÞ
�
;

(12)

wherem−x represents the model realizations at the previous inverted
traces, μk

m is the kriging mean, Σk
m is a diagonal matrix with the

kriging variances, and c is the normalization constant that depends
on the determinant of the covariance matrix.
By including the kriging-based prior term of equation 12 in the

acceptance rule of the Metropolis algorithm in equation 4, we ob-
tain

p ¼ min

(
exp

�
−
1

2
ðF likeðm 0Þ − F likeðmiÞÞ

�

× exp

�
−
1

2
ðF krig−priorðm 0Þ − F krig−priorðmiÞÞ

�
; 1

)
;

(13)

where

F krig−priorðmÞ ¼ ðm − μk
mÞTðΣk

mÞ−1ðm − μk
mÞ: (14)

In practice, we randomly select a trace according to a random
path, and we apply the 1D algorithm with acceptance rule given
in equation 13, which depends on the estimated models at the pre-
vious inverted traces. The kriging of the previously simulated values
at the adjacent traces is selected within a moving searching neigh-
borhood. Large moving searching neighborhoods generally lead to
smooth posterior models, whereas small moving searching neigh-
borhoods lead to a larger lateral variability.
To quantify the consistency of the kriging-based prior model and

the data-informed posterior model, we compute the similarity of the
two probability distributions using the Kullback-Leibler divergence:

DKLðPðmjd;m−xÞjjPðmjm−xÞÞ¼
Z

Pðmjd;m−xÞ logPðmjd;m−xÞ
Pðmjm−xÞ dm

¼
Z

Pðmjd;m−xÞ logPðdjmÞdm− logPðdÞ
Z

Pðmjd;m−xÞdm: (15)

The integral can be computed using the MCMC samples, by com-
puting the mean of the negative log likelihood that is equal to the
logarithm of the ratio in equation 15 apart from an additive constant.
The Kullback-Leibler divergence quantifies the change of the state of
information contained in the prior and in the posterior. The Kullback-
Leibler divergence can reveal inconsistencies between the prior
model and the likelihood, which might occur in certain geologic envi-
ronments, for example, in the presence of lateral discontinuities in the
data caused by a fault, or it could be caused by instability of the sol-
ution or noise in the data.

2D case using trace similarity

In the second proposed approach, we include the lateral corre-
lation in the MCMC inversion by imposing a lateral continuity
between adjacent traces in a raster path, where the traces are
visited according to their spatial ordering. We adopt the same

M16 Grana et al.
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formulation as in equation 9 with the same prior and likelihood
models as the 1D case. The continuity is imposed by introducing
an additional term that models the similarity between the current
trace and the previous one. For a given trace x of the raster path,
the spatial prior term of the model variable m is given by

Pðmjmx−1Þ¼ exp

�
−
1

2
ððm−mx−1ÞTðβΣmÞ−1ðm−mx−1ÞÞ

�
;

(16)

where mx−1 is the mean estimate obtained from the posterior sam-
pling of the previous trace of the path. The inflation parameter β is
introduced to compute a fraction of the prior variance, and it con-
trols the lateral correlation in the 2D model. The parameter β is
tuned to reproduce the lateral correlation and guarantee a fast con-
vergence: Values of β < 1 impose a strong lateral continuity,
whereas values of β > 1 guarantee a larger variability of the pro-
posed models. Low values lead to strongly laterally correlated
models.
The Metropolis rule in equation 4 can then be rewritten as fol-

lows:

p¼min

8>>><
>>>:
exp

�
− 1

2
ðF likeðm 0Þ−F likeðmiÞÞ

�
× exp

�
− 1

2
ðF priorðm 0Þ−F priorðmiÞÞ

�

×exp
�
− 1

2
ðF latðm 0Þ−F latðmiÞÞ

�
;1

9>>>=
>>>;
;

(17)

where

F latðmÞ ¼ ðm −mx−1ÞTðβΣmÞ−1ðm −mx−1Þ: (18)

In this approach, at each trace we apply the 1D algorithm with the
acceptance rule given in equation 18, which depends on the inverted
model at the previous adjacent trace.

APPLICATION

We first illustrate the MCMC method for spatially correlated
properties on a 1D seismic inversion problem; we then show the
extension to a 2D problem using the two algorithms introduced
in the “Methodology” section.
The first application represents a 1D inverse problem in which

the input data are three synthetic seismograms. This example aims
to estimate the posterior distribution of porosity and water satu-
ration from seismic data. The vertical profile represents an oil res-
ervoir in the Norwegian Sea. In the top part of the reservoir, the
average porosity is approximately 0.25 and the oil saturation is
approximately 0.80 due to the percentage of irreducible water sat-
uration. In the lower part of the reservoir, the porosity is lower and
the water saturation is close to 1. The correlation between the
porosity and the water saturation is −0.6. The synthetic seismo-
grams are computed from the well-log data using a geophysical
forward operator that includes rock physics and seismic relations,
namely, the stiff sand model to compute the P- and S-wave veloc-
ities and density and a seismic model to calculate the seismic re-
sponse from the elastic properties. The input variables of the
geophysical forward operator are porosity and water saturation,
and the predicted data are the seismic amplitudes. We first apply
the stiff sand model (Dvorkin et al., 2014) for a mixture of two

fluids in the pore space, namely, brine and oil, and assuming a
constant clay content equal to 0.2. The model assumes constant
bulk and shear moduli and density for the solid phase, whereas
the bulk modulus and the density of the fluid phase are computed
using the Reuss average and linear average, respectively. The stiff
sand model applies Hertz-Mindlin equations at the critical poros-
ity and the modified Hashin Shtrikman upper bounds for porosity
values between zero and the critical porosity to compute the dry-
rock elastic moduli. Gassmann’s equations are applied to compute
the saturated-rock elastic properties and the corresponding P- and
S-wave velocities. For this example, the critical porosity is 0.4 and
the coordination number (i.e., the average number of contacts per
grain) is 7. We then apply the seismic forward model using a con-
volutional operator. Based on the elastic properties, P- and S-wave
velocities and density, calculated using the rock physics model, we
compute the P-P reflection coefficients using the Aki-Richards’
approximation of the Zoeppritz equations (Aki and Richards,
1980). The seismic amplitudes are finally computed as a convo-
lution of a Ricker wavelet with a dominant frequency of 45 Hz and
the P-P reflection coefficients. The seismic data include nd ¼ 98

samples and are computed with a sampling rate of 1 ms, for the
angles of 15°, 30°, and 45°, assuming a signal-to-noise ratio (S/N)
of five. The seismic data, with and without noise, are shown in
Figure 1. We assume a truncated Gaussian distribution for porosity
and water saturation. The prior mean is obtained from a low-fre-
quency model computed by applying a filter to the actual well logs
(Figure 2). We assume a prior vertical correlation model based on
a Gaussian function with correlation length of 5 ms, estimated by
fitting the vertical correlation function to the actual logs. The in-
flation parameter α is calibrated to 0.1 after a trial-and-error ap-
proach to obtain a satisfactory acceptance ratio.
We run 105 iterations, with a burn-in phase of approximately

1000 models. A subset of 500 realizations and the estimated pos-
terior distribution are shown in Figure 2. The posterior mean accu-
rately matches the actual log of porosity, but it fails to match the
actual log of water saturation; however, the maximum a posteriori
shows a good agreement, especially for values close to the boundary
of the water saturation. Because the posterior distribution is non-
Gaussian, the maximum a posteriori is numerically evaluated at
each location, by approximating the posterior distribution using
the histogram smoothing method and computing the argmax,
i.e., the argument of the maximum.
The linear correlation coefficient between the posterior mean

and the true curve is 0.90 for porosity and 0.96 for saturation,
whereas the linear correlation between the maximum a posteriori
and the true curve is 0.83 for porosity and 0.94 for saturation. To
evaluate the uncertainty assessment, we adopt the 0.90 coverage
ratio of the predictions, which defines the fraction of true values
that fall within the 0.90 confidence interval. By definition, the op-
timal 0.90 coverage ratio is 0.90, which means that 90% of the true
values fall within the 0.90 confidence interval. The 0.90 coverage
ratio for porosity is 0.94, and for water saturation it is 0.70, which
shows a slight underestimation of the uncertainty for water satu-
ration, possibly due to the truncation. The convergence plot of the
105 iterations is shown in Figure 3. The convergence is visualized
by plotting the negative logarithm of the posterior distribution,
i.e., the product of the likelihood function and prior distribution
apart from the normalization constants. Because the product is less
than or equal to one, the logarithm is negative; therefore, we plot
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the negative logarithm that has positive sign. The acceptance ratio
is approximately 10%. The inversion takes approximately 150 s on
a standard laptop.
We then apply the MCMC inversion methods with lateral corre-

lation to a 2D seismic inversion problem. The seismic data are
shown in Figure 4 and include three vertical sections corresponding
to near, mid, and far angles. The data are computed from the syn-
thetic reservoir model presented in Dvorkin et al. (2014), assuming
an S/N equal to five. The porosity was simulated with a locally var-
iable mean model obtained from a depth trend extracted from a real
case application, and the water saturation was cosimulated from
porosity assuming a linear correlation of −0.9. The 2D sections
of porosity and water saturation are shown in Figure 5. The geo-
physical forward operator is the same as in the 1D example, and
it includes the stiff sand model and the convolution of a Ricker
wavelet and the P-P reflection coefficients estimated with Aki-Ri-
chards’ equation. The seismic data include nx ¼ 85 traces and nd ¼
67 samples per trace and are computed with a sampling rate of 1 ms,
for the angles of 15°, 30°, and 45°. The spatial correlations functions
were estimated by fitting theoretical models to the 2D sections. The
prior vertical correlation is assumed to be a Gaussian function with
correlation length of 5 ms, and the lateral correlation function is a
spherical model with correlation length of 15 traces. The low-fre-
quency prior model is shown in Figure 6. We apply and compare the
two sequential trace-by-trace methods based on kriging and trace
similarity presented in the “Methodology” section. After a trial-
and-error calibration, the inflation parameter α is calibrated to
0.1 and the inflation parameter β is 1. Figure 7 shows the inverted
results obtained with the kriging-based approach, whereas Figure 8
shows the inverted results obtained with the trace similarity ap-
proach. We run 104 iterations and compute the posterior statistics

using 9000 models. Both results show accurate predictions
compared with the true data set in Figure 5. The results are com-
pared with a standard trace-by-trace MCMC approach with the
same vertical correlation function but without lateral correlation
model (Figure 9). The predicted models estimated using the pro-
posed MCMC approach for spatially correlated variables show a
stronger lateral continuity than the uncorrelated approach.
Figure 10 shows three randomly selected realizations obtained

using preconditioning with kriging. The pointwise posterior vari-
ance maps of porosity and water saturation are shown in Figure 11,
for the kriging-based approach, in which some lateral discontinu-
ities are due to the choice of the random path used for the
simulation. For a full evaluation of the posterior variance, we rec-
ommend running the MCMC algorithms multiple times with differ-
ent random paths and averaging the results to avoid instability of the
inversion results. The results for the trace similarity approach show
similar global statistics. Figure 12 shows the 2D spatial correlation
model of the posterior mean of the porosity compared to the true
porosity model. The proposed method does not guarantee that the
spatial correlation function is exactly reproduced. Indeed, in this
case, the spatial correlation function is not exactly reconstructed,
due to a slightly longer correlation length in the lateral direction.
The spatial correlation model is part of the prior information that
is updated according to the likelihood function of the data. In this
case, the lateral continuity of the data affects the spatial correlation
model of the predictions.
The linear correlation coefficient between the posterior mean and

the true map is 0.88 for porosity and 0.87 for saturation, whereas the
0.90 coverage ratio for porosity is 0.86 and for water saturation is
0.68. We believe that the slight underestimation of the uncertainty
is due to the spatial correlation constraints and the choice of the

Figure 1. Synthetic seismic data set for 1D inver-
sion: (a) near-, (b) mid-, and (c) far-angle stacks.
The gray curves represent the noise-free seismic
data, and the black curves represent the seismic
data with noise.
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random path. The calculation of the coverage ratio becomes more
precise when the confidence intervals are estimated from multiple in-
version runs. The convergence plots using the kriging-based and sim-
ilarity-based approaches are shown in Figure 13. The preconditioned

prior guarantees a faster convergence for both approaches with a
burn-in phase of approximately 100 realizations. Different colors
show the negative log posterior at different trace locations. The neg-
ative log posterior is defined as the negative logarithm of the product
of the likelihood function and the prior distributions apart from the
normalization constant. In the kriging-based approach, the first traces
along the random path have a longer burn-in period, whereas the last
traces in the random path have a shorter burn-in period due to the
more informative prior estimated using kriging of the previously

Figure 2. Inverted petrophysical properties: (a) porosity and
(b) water saturation. The gray curves represent the posterior models,
the green curves represent the maximum a posteriori, the red curves
represent the posterior means (the dashed red curves represent the
0.90 confidence intervals), the blue curves represent the prior
means, and the black curves represent the actual model.

Figure 3. Convergence of the negative logarithm of the posterior
distribution.

Figure 4. Synthetic seismic data set for 2D inversion: (a) near-,
(b) mid-, and (c) far-angle stacks.

Figure 5. Actual petrophysical properties in the depth domain:
(a) porosity and (b) water saturation.
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inverted traces. The inversion takes approximately 18 min for 85
seismic traces on a standard laptop.
Figure 14 shows the Kullback-Leibler divergence of the pos-

terior distribution given three different prior models: uncorrelated,
kriging based, and similarity based. For the kriging- and similar-
ity-based prior models, the Kullback-Leibler divergence is always
smaller than the Kullback-Leibler divergence obtained using the
laterally uncorrelated prior models. In the kriging-based approach,
the Kullback-Leibler divergence decreases with the number of
traces visited along the random path, due to the larger effect of
the previously estimated models at adjacent locations on the krig-
ing-based prior distribution at the current location. The trace-sim-
ilarity approach shows an approximately constant Kullback-
Leibler divergence, due to the proximity of the adjacent trace
in the raster path compared with the kriging approach based on

the random paths. Higher values of the Kullback-Leibler diver-
gence might reveal the presence of lateral discontinuities, such
as faults. Therefore, if at a given trace the Kullback-Leibler diver-
gence of the posterior given the laterally conditioned prior is
higher than the Kullback-Leibler divergence of the posterior given
the laterally independent prior, the lateral constraint should not be
used to reproduce the expected lateral discontinuity.

DISCUSSION

The proposed approach is computationally efficient owing to the
trace-by-trace approach but still allows imposing a lateral correla-
tion model. For 1D applications, the inversion can be efficiently
applied to data sets with a large number of time samples. The ex-
tension to 2D and 3D applications with large data sets (e.g., of the

Figure 6. Prior mean of (a) porosity and (b) water saturation.

Figure 7. Posterior mean of (a) porosity and (b) water saturation
obtained using preconditioning with kriging.

Figure 8. Posterior mean of (a) porosity and (b) water saturation
obtained using preconditioning with similarity.

Figure 9. Posterior mean of (a) porosity and (b) water saturation
obtained without prior lateral correlation.
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order of 105 traces) might require a parallel implementation of the
algorithm. The data errors are generally assumed to be spatially
uncorrelated, such that the covariance matrix Σε is diagonal;
however, in many practical applications, the errors in the seismic
data are spatially correlated due to the seismic acquisition and
processing methods. If a vertical correlation model of the error
is available, the 1D inversion can be applied using the full covari-
ance matrix of the error. However, defining the parameters of the
error model requires prior knowledge of seismic data acquisition
and processing. The extension to 2D and 3D applications with lat-
erally correlated errors is more challenging due to the correlation
imposed by the migration operator that applies a spatial filter with
correlation length associated with the Fresnel zone.
The implementation in 2D and 3D applications is based on the

concept of the random path. The theoretical formulation of sequen-
tial simulations requires that all previously simulated traces should
be included in the kriging interpolation. However, to reduce the
computational cost, we limit the number of neighboring traces to
a subset of traces that are closer to the current trace. The simulation
path might also affect the local accuracy and variability of the sol-
ution. A comprehensive analysis of the effect of the simulation path
on the simulated models and the definition of optimal path in terms
of information loss are presented in Nussbaumer et al. (2018). In the
context of stochastic inversion based on MCMC algorithms, we rec-
ommend repeating the inversion several times with different random
paths to investigate the effect of the simulation path on the inversion
results. The extension from 2D to 3D applications is relatively
straightforward but might be limited by the computational cost
of multiple runs and might require anisotropic spatial correlation
functions that are challenging to calibrate with limited data.

In the proposed synthetic applications, we assume a homogeneous
lithology with constant mineral volumes. The extension to petrophys-
ical problems with variable lithologies is generally straightforward.
The formulation of the proposedMCMCmethod is not limited by the
number of model variables and can be applied to any finite number of
volumetric fractions of solid and fluid phases as long as a rock-phys-
ics model can be defined and calibrated using core samples or well-
log data. By introducing the volume of the main mineral component
(e.g., the volume of quartz or clay in clastic reservoirs or the volume

Figure 10. Three random realizations of (a) porosity and (b) water saturation obtained using preconditioning with kriging.

Figure 11. Posterior variance of (a) porosity and (b) water satura-
tion obtained using preconditioning with kriging.
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of calcite in carbonates), the method can be extended to multiple
lithologies with the same rock-physics model (e.g., granular media
models in clastic reservoirs or inclusion models in carbonates) in
which the lithology variations are modeled using the effective solid
elastic moduli and density computed using the Voigt and Reuss or
Hashin Shtrikman mixing laws (Grana et al., 2021). If the elastic re-
sponses in multiple facies obey different rock physics relations, the
MCMC can be formulated with a mixture of probability distributions
(de Figueiredo et al., 2019a), in which each probability distribution
corresponds to a given facies and the weights of the mixture corre-
spond to the facies proportions. However, this algorithm requires the
joint or sequential simulation of discrete (facies) and continuous (pet-
rophysical properties) random variables and spatial correlation mod-
els for each facies. A theoretical formulation for this approach is
proposed by de Figueiredo et al (2019b), but the computational cost
makes it a difficult application to large data sets.
In the proposed examples, the prior distribution is assumed to be

Gaussian. In general, any prior distribution can be used including
Gaussian mixture models for multimodal variables (de Figueiredo
et al., 2019a) or nonparametric distributions for nonsymmetric dis-
tributions (de Figueiredo et al., 2019b). For computational effi-
ciency, it is generally possible to apply logit or normal-score
transformations to perform the inversion in the transformed domain
according to Gaussian assumptions (Grana et al., 2021). MCMC
methods with complex prior models with spatially correlated var-
iables have also been proposed by Hansen et al. (2012) and Zunino

et al. (2015) and could be extended to the proposed approach for
continuous properties.
One of the critical aspects of the application of this methodology

to real case studies is the calibration of the hyperparameters of the
prior and forward models. The rock-physics model might require
laboratory experiments of the rock and fluid parameters (e.g., the
bulk and shear moduli and density of the mineral and fluid compo-
nents) and well-log calibration to fit empirical constants (e.g., the
average coordination number or aspect ratio). Similarly, spatial cor-
relation models must be calibrated using available data and nearby
field information: The vertical correlation function can generally be
defined at the well location by fitting theoretical models to the ex-
perimental function, whereas lateral correlation is often assumed a
priori based on nearby fields or prior geologic knowledge of the
area. Theoretically, it is possible to calibrate the lateral correlation
function from seismic data; however, one of the main challenges of
this approach is the potential bias in the lateral continuity of the
processed seismic data due to the migration operator in the Fresnel
zone.
The Kullback-Leibler divergence is used to illustrate the advan-

tages of the spatially correlated approach compared to the uncorre-
lated one and to identify local discontinuities that might be due to
instability of the solution, noise in the data, or local discontinuities.
Other metrics could be used, including the Wasserstein distance or
the Kantorovich-Rubinstein metric and the Jensen-Shannon diver-
gence. The Wasserstein distance is a distance function defined

Figure 12. Posterior spatial correlation model of porosity obtained
using (a) preconditioning with kriging compared to (b) the model
estimated from true data.

Figure 13. Convergence plot of the negative logarithm of the pos-
terior distribution for multiple traces: the (a) similarity-based ap-
proach and (b) kriging-based approach.
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between probability distributions on a given metric space, but it is
less analytically tractable than the Kullback-Leibler divergence.
The Jensen-Shannon divergence is defined based on the Kull-
back-Leibler divergence, but it is symmetric by definition. We adopt
the Kullback-Leibler divergence due to its direct connection to in-
formation theory because it quantifies the change of the state of
information from one distribution to the other.

CONCLUSION

We presented anMCMCmethod for the seismic inversion problem
to estimate the posterior distribution of petrophysical properties. The
method is specifically developed for vertically correlated random var-
iables by introducing a vertical covariance model in the prior distri-
bution. The extension to multidimensional problems is based on a
sequential trace-by-trace approach in a hierarchical Bayesian formu-
lation, in which the prior model combines the prior distribution of the
model variables and a lateral correlation model. We presented two
efficient approaches: The first approach is based on a kriging ap-
proach with a locally variable mean, whereas the second approach
is based on a similarity measure of adjacent traces. Both approaches
are computationally efficient and can be implemented on standard
laptops. The applications demonstrate that the proposed method
accurately predicts the model variables, quantifies the model uncer-
tainty, and reproduces the expected spatial correlation in the vertical
and lateral directions.
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