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ABSTRACT

A joint estimation of petrophysical properties is proposed that
combines statistical rock physics and Bayesian seismic inver-
sion. Because elastic attributes are correlated with petrophysical
variables �effective porosity, clay content, and water saturation�
and this physical link is associated with uncertainties, the petro-
physical-properties estimation from seismic data can be seen as a
Bayesian inversion problem. The purpose of this work was to de-
velop a strategy for estimating the probability distributions of
petrophysical parameters and litho-fluid classes from seismics.
Estimation of reservoir properties and the associated uncertainty
was performed in three steps: linearized seismic inversion to esti-
mate the probabilities of elastic parameters, probabilistic upscal-
ing to include the scale-changes effect, and petrophysical inver-
sion to estimate the probabilities of petrophysical variables and
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itho-fluid classes. Rock-physics equations provide the linkbe-
ween reservoir properties and velocities, and linearized seismic

odeling connects velocities and density to seismic amplitude.A
ull Bayesian approach was adopted to propagate uncertainty
rom seismics to petrophysics in an integrated framework that
akes into account different sources of uncertainty: heterogeneity
f the real data, approximation of physical models, measurement
rrors, and scale changes. The method has been tested, as a feasi-
ility step, on real well data and synthetic seismic data to show
eliable propagation of the uncertainty through the three different
teps and to compare two statistical approaches: parametric and
onparametric. Application to a real reservoir study �including
ata from two wells and partially stacked seismic volumes� has
rovided as a main result the probability densities of petrophysi-
al properties and litho-fluid classes. It demonstrated the applica-
ility of the proposed inversion method.
INTRODUCTION

In reservoir characterization studies constrained by seismic data,
tatistical rock physics normally is used to combine statistical tech-
iques with physical equations to generate different petroelastic sce-
arios. The goal of statistical rock physics is to predict the probabili-
y of petrophysical variables when velocities �or impedances� and
ensity are assigned, and to capture the heterogeneity and complexi-
y of the rocks and the uncertainty associated with theoretical rela-
ions.

The use of statistics in rock physics is becoming more frequent. In
he typical statistical rock-physics workflow �Avseth et al., 2005;
oyen, 2007�, deterministic models first are established to build
hysical relations between elastic properties and reservoir at-
ributes. Then, probabilistic petroelastic transformations are deter-

ined, combining these relations with Monte Carlo simulations, to
nclude the uncertainty associated with the real data �measurement
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rrors and natural heterogeneity of the rocks� and with the degree of
ccuracy of the model itself.

The traditional Bayesian framework �Tarantola, 2005� used for
ncertainty evaluation in elastic inversion �Buland and Omre, 2003�
as been adopted recently for problems of litho-fluid prediction
rom seismic data �Larsen et al., 2006; Gunning and Glinsky, 2007;
nd Buland et al., 2008�.

Mukerji et al. �2001� and Eidsvik et al. �2004� introduce statistical
ock physics to estimate reservoir parameters from prestack seismic
ata and to evaluate the associated uncertainty. Stochastic rock-
hysics models are used by Bachrach �2006� for a joint estimation of
orosity and saturation and by Sengupta and Bachrach �2007� for
ay-volume uncertainty evaluation, and Spikes et al. �2008� develop
probabilistic seismic inversion to constrain reservoir properties es-

imation with well data and seismic. To infer litho-fluid classification
rom seismic data, Larsen et al. �2006� propose an integrated litho-
uid-inversion method based on a Markov-chain model, and Gallop
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O22 Grana and Della Rossa
2006� presents an approach based on mixture distributions for fa-
ies estimations. González et al. �2008�, and Bosch et al. �2009� pro-
ose new approaches integrating advanced geostatistical tech-
iques.

In this paper, we present a method to integrate statistical rock
hysics and Bayesian elastic inversion to compute the probability
istributions of petrophysical properties. Similar approaches al-
eady have been presented, with some assumptions and limitations
bout the form of the probability distributions, the size of the data,
nd the type of dependencies considered. By means of more general
arametric distributions, such as Gaussian mixture models �GMMs�
Hastie et al., 2002�, or nonparametric statistical techniques like ker-
el density estimation �KDE� �Silverman, 1986�, some limitations
an be overcome by our approach. We also take into account the up-
caling problem �Lake and Srinivasan, 2004� to face the limited res-
lution and greater uncertainty of seismic data compared to well-log
ata and we integrate this step within the probabilistic inversion
ramework.

The workflow we propose �Figure 1� can be summarized as fol-
ows:

� Rock-physics model calibration. A rock-physics model is es-
tablished using well-log data to predict elastic attributes �veloc-
ities or impedances� from petrophysical properties.

� Linearized Bayesian seismic inversion. We estimate elastic
properties from partially stacked seismic angle gathers.

� Conditional probabilities estimation. We calculate the condi-
tional probabilities of petrophysical variables and litho-fluid
classes in a multiproperty, multiscale model. This method in-
cludes the upscaling effect within an integrated probabilistic
approach.

The rock-physics model is a set of equations that transforms
etrophysical variables in elastic attributes. The rock-physics model
ype depends on the reservoir rocks we are dealing with: the set of
quations can be a simple regression on well data or a more complex
hysical model �Mavko et al., 2003�. Once the rock-physics model
as been calibrated on well logs, we can apply the model to situa-
ions not sampled by log data and generate different scenarios by

eans of Monte Carlo simulations. This approach is used to explore,

Prestack seismic data

Elastic attributes m (I I )P S,

Petrophysics R (φ ), ,C sw

Litho-fluid

Well data &
rock physics

Conditional
estimations

igure 1. Flowchart of the probabilistic petrophysical-properties es-
imation
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or example, all possible ranges of porosity, saturation, and clay con-
ent, and to simulate the corresponding acoustic and elastic respons-
s.

Our proposed method propagates the uncertainty from seismic
ata to petrophysics by combining three conditional probabilities.
he first is the probability of elastic properties given seismic data ob-

ained by a Bayesian approach to elastic inversion �Buland and
mre, 2003�. The second is the probability of elastic attributes at
ne scale �high resolution� when coarse-scale values are known. The

hird is the probability of petrophysical properties conditioned by
lastic attributes obtained by integrating the rock-physics model
quations with Monte Carlo simulations and generating different
eologic scenarios.

We applied the method to a clastic reservoir in the North Sea,
here two wells and four partially stacked seismic angle gathers are

vailable. As a feasibility step, we tested the method on a calibration
ell using a synthetic seismic trace and compared two approaches:
MMs and KDE. Then we applied the method to the whole seismic
olume and obtained, trace-by-trace, the probability density func-
ions of petrophysical variables and litho-fluid classes.

PROBABILISTIC APPROACH TO
PETROPHYSICAL INVERSION

In this section, we illustrate the probabilistic formulation of the
oint petrophysical inversion. We describe the derivation of posteri-
r probabilities of petrophysical properties and litho-fluid classes,
onditioned by seismics, using different attributes �elastic, petro-
hysical, and categorical� and integrating data coming from differ-
nt sources �high-resolution well data, coarse-resolution data, and
eismic data�.

The methodology is divided in three steps: �1� statistical rock-
hysics modeling, �2� upscaling, and �3� petrophysical inversion
rom seismic data.

In the following, we will use m to indicate the acoustic and elastic
roperties, typically impedances IP and IS �m� �IP IS�T�, and R to
epresent petrophysical data, typically effective porosity, water satu-
ation, and clay content �R� �� sw C�T�.

tatistical rock-physics modeling

One important aspect of statistical rock-physics is that it com-
ines physical models with statistics to account for situations not
een in the well data. If all variables are considered as random vec-
ors, the rock-physics model can be written as

m� fRPM�R���, �1�

here fRPM represents the rock-physics model and � is the random er-
or describing the degree of accuracy of the model.

For the prior distribution, which is the same at any depth, we as-
ume a multivariate Gaussian mixture �GM�, a linear combination of
aussian distributions, with a fixed number of components Nc:

P�R�� �
k�1

Nc

�kN�R;�R
k ,�R

k �, �2�

here N indicates the multi-Gaussian distribution of vector R with
ean �R

k and covariance matrix �R
k for all k�1, . . . ,Nc and �k are

he weights of the linear combination �with �Nc � �1�.
k�1 k
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Probabilistic petrophysical estimation O23
This choice is motivated by two reasons. First, this formulation al-
ows us to model each litho-fluid class detectable from a petrophysi-
al point of view as a single Gaussian component of the mixture.
econd, the approach is convenient analytically because the analyti-
al results valid for Gaussian distributions also can be extended to
aussian mixtures. We use three components initially in our tests be-

ause the litho-fluid classification we consider consists of shale, oil
and, and water sand.

We propose a semianalytical approach for estimation of the condi-
ional probability P�R �m�: we generate a set of Ns samples from the
rior distribution P�R�, apply the rock-physics model fRPM, estimate
he joint distribution assuming a Gaussian mixture distribution, and
nalytically derive the conditional distribution.

From the prior distribution, different scenarios can be generated
y Monte Carlo simulation. Petrophysical variables can be sampled
rom the prior distribution and the elastic response can be computed
y the rock-physics model fRPM. We model the vertical correlation of
etrophysical properties by means of a vertical variogram to obtain
seudologs of elastic variables with a realistic vertical correlation
nd subsequently perform upscaling on elastic variables in the prob-
bilistic upscaling step.

We made the additional assumption that error � in equation 1 is
aussian with zero mean and covariance �� that can be estimated

rom well-log data. With this assumption, we can state that

P�m�R��N�m;��R�,���, �3�

here the mean ��R�� fRPM�R� and covariance matrix �� can be
ssumed independent of R and related only to �.

This model allows us to account for uncertainty associated with
ock-physics model predictions by means of Monte Carlo simula-
ions and conditional probabilities estimations. In fact, we can gen-
rate a set of Ns samples �Ri�i�1,. . .,Ns

from the petrophysical prior
�R�; then we compute the response of the rock-physics model
�Ri�� fRPM�Ri�, for all i�1, . . . ,Ns and generate Ns samples

mi�i�1,. . .,Ns
from the normal distributions N�m;��Ri�,���.

Joint distribution P�m,R� can be estimated from the Ns samples
�mi,Ri��i�1,. . .,Ns

. If the joint distribution is a Gaussian mixture

P�m,R�� �
k�1

Nc

� kN��m,R�T;��m,R�
k ,��m,R�

k �, �4�

hen conditional distribution P�R �m� is again a Gaussian mixture. If
he rock-physics model fRPM were linear, the joint distribution could
e derived analytically from the prior, but in general, fRPM is not lin-
ar and joint distribution P�m,R� can be obtained from the Monte
arlo samples. The technique adopted to estimate parameters of the
aussian components and weights of the mixture is the expectation-
aximization �EM� algorithm �Hastie et al., 2002�. We point out that

hese weights can be interpreted as the indicator probability of the
iscrete random variable that represents the litho-fluid class.

As a consequence, the conditional distribution P�R �m� is a
aussian mixture,

P�R�m�� �
k�1

Nc

�kN�m;�R�m
k ,�R�m

k �, �5�

nd we can analytically compute its parameters. In particular, the
eans and covariance matrices of the mixture components �see Ap-

endix A� are given by
Downloaded 22 Oct 2011 to 128.12.212.21. Redistribution subject to S
�R�m
k ��R

k ��R,m
k ��m,m

k ��1�m��m
k � �6�

nd

�R�m
k ��R,R

k ��R,m
k ��m,m

k ��1�m,R
k , �7�

or each given m. The assumption that both petrophysical and elastic
ariables are distributed as a Gaussian mixture is compatible with
he hypothesis of GM distribution for the prior model and it is rea-
onable if the rock-physics model is not too far from linearity.

However, if these assumptions are not in agreement with well-log
ata, a nonparametric approach for the conditional probability esti-
ation P�R �m� should be adopted. In this case, we propose to esti-
ate the joint distribution P�m,R� by applying kernel density esti-
ation on the Monte Carlo samples in a multidimensional domain.
ernel density estimation is a nonparametric technique that allows
s to estimate the probability distribution by fitting a base function
the kernel function� at each data point including only those observa-
ions close to it.

The joint probability can be expressed as the sum of the contribu-
ions of the same kernel function centered at each data-point location
see Silverman, 1986�. For example in 2D, if m� �IP� and R� ���,
hen

P�m,R�� P�IP,���
1

NshPh�
�
i�1

Ns

K	 IP� IP
i

hP

K	� �� i

h�

,

�8�

here K is the kernel function, �IP
i ,� i�i�1,. . .,Ns

are the data samples,
nd hP and h� are the scaling lengths �also called kernel widths�. Ker-
el function K is a nonnegative symmetric function. In this work, we
sed the Epanechnikov kernel �Doyen, 2007�:

K�x���3

4
�1�x2� x� ��1,1�

0 otherwise.
� �9�

or each variable, the scaling lengths control the distance of the ob-
ervations from the data points and they have to be assessed using
raining data.

In the current workflow, we estimate the joint distribution by KDE
n a multidimensional grid. Then, conditional distribution P�R �m�
an be numerically evaluated by definition

P�R�m��
P�m,R�


P�m,R�dR

, �10�

hich corresponds to a normalization of the joint probability
P�m,R� for each given m.

robabilistic upscaling

The described method does not explicitly consider the difference
n scale and domain of the available data due to different sources of
nformation. In fact, the typical domain of a rock-physics model is
epth with the resolution of well logs, whereas inverted seismic at-
ributes are obtained in the time domain with a lower resolution. The
bjective of this section is to define a step in the methodology that ac-
ounts for these differences and is consistent with the general proba-
ilistic approach we are proposing. In general, there are two main is-
EG license or copyright; see Terms of Use at http://segdl.org/
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O24 Grana and Della Rossa
ues to take into account in scale-reconciling problems: computation
f physically equivalent measures at different scales and correct
ropagation of the uncertainty from one scale to another.

Upscaling of petrophysical and elastic properties is complicated
y the presence of spatial and vertical correlation in the heterogene-
ties distributions �see, for example, Lake and Srinivasan, 2004�.
owever, in agreement with the choice of our petrophysical inver-

ion model, we concentrate on the problems of coherently trans-
orming different measures from one resolution to another and esti-
ating the corresponding changes in probability distribution. We

dopted Backus averaging �Backus, 1962� to face the first problem
or elastic properties, and we tackled the second issue by estimating
he conditional distribution of elastic parameters at high-resolution
cale �fine scale� given the corresponding data at low-resolution
cale �coarse scale�.

The starting point for the probabilistic scale change is the rock-
hysics model with the associated uncertainty defined as in equation
. If mf represents the fine-scale �log-scale� vector of the elastic pa-
ameters and mc the corresponding coarse-scale �seismic� data, we
ndicate the change of scale with mc�g�mf�, where function g rep-
esents Backus averaging for velocities and linear average for densi-
y.

To integrate the upscaling problem in our probabilistic frame-
ork, we propose the following scheme. If mf is conditionally dis-

ributed with probability P�mf �R�, the problem of the estimation of
he distribution conditioned by mc can be solved by generating a set
f Ns samples �mi

f�i�1,. . .,Ns
according to P�mf �R� by Monte Carlo

imulation, and applying the upscaling transformation g, so we ob-
ain a set of joint samples ��mi

f,mi
c��i�1,. . .,Ns

that can be used to esti-
ate �with Gaussian models, for example� the conditional distribu-

ion P�mf �mc�.
The conditional distribution of the petrophysical parameters giv-

n coarse-scale elastic data P�R �mc� can be obtained combining
�R �mf� with P�mf �mc� by means of the Chapman-Kolmogorov
quation �Papoulis, 1984�

P�R�mc��

Rn

P�R�mf�P�mf�mc�dmf, �11�

here n is the dimension of mf �n�2 in the case of IP and IS�. This
xpression is the probabilistic model that includes uncertainties due
o rock physics (P�R �mf�) and upscaling (P�mf �mc�).

rom seismic to petrophysics inversion

To obtain the posterior distribution of elastic parameters from
eismics, we use a linearizedAVO inversion technique in a Bayesian
ramework. The inversion method adopted here assumes an isotro-
ic and elastic medium and it combines the convolutional model
ith Aki-Richards linearized approximation of Zoeppritz equations
alid for vertical weak contrasts, as in Buland and Omre �2003�.

If S refers to seismic data, the elastic model can be expressed as:

S�G��e, �12�

here G is the forward linearized operator including both convolu-
ion and weak contrasts Aki-Richards approximation, � is the vector
f the logarithms of the whole trace of the elastic parameters, and e is
Gaussian error term with zero mean and covariance � . We also as-
e

Downloaded 22 Oct 2011 to 128.12.212.21. Redistribution subject to S
ume that � is distributed according to a multivariate Gaussian prior
�N��;��,���.
Under these hypotheses, it can be shown �Buland and Omre,

003� that P�� �S� is again Gaussian:

P���S��N��;���S,���S�, �13�

here

���S�����S,�
T ��S��1�S��S� �14�

nd

���S�����S,�
T ��S��1�S,�. �15�

ere, �S�G��, �S�G��GT��e, and �S,��G�� are the cross-
ovariance between the vector of parameters � and seismic data S.

When the conditional distribution P�� �S� is known, then the log-
ormal distribution P �mc �Sz� can be derived at each vertical posi-
ion z �assuming a depth conversion of seismic inversion results�.
he final step to compute the probability of petrophysical variables
onditioned by seismic data P �R �Sz� including the upscaling effect
equation 11�, can be written as

P�R�Sz��

Rn

P�R�mc�P�mc�Sz�dmc. �16�

y means of equation 16, we finally obtain the posterior probabili-
ies of the petrophysical properties.

We also can introduce a further step to apply the same methodolo-
y in the discrete domain, in classification studies of litho-fluid
lasses, for example. Formally, we compute the probability

P�� z�Sz��

Rn

P�� z�R�P�R�Sz�dR, �17�

here � z is the generic litho-fluid class at vertical position z, n is the
imension of R �n�3, if R� �� sw C�T�, and P�� z �R� is the rock-
hysics likelihood function.

To generate different realizations of litho-fluid classes condi-
ioned by seismics, including vertical correlation to model the verti-
al continuity of litho-fluid classes, we can combine the posterior
robability �equation 17� with a Markov-chain prior model �as in
arsen et al., 2006�

P�� z�Sz��

Rn

P�� z�R�P�R�Sz�dR

�

Rn

P�R�� z�P�� z�P�R�Sz�dR�

� �
z

P�� z�� z�1�

Rn

P�R�� z�P�R�Sz�dR,

�18�

here z indicates depth, and the probability P�� z �� z�1� can be ob-
ained from the downward Markov-chain transition matrix of litho-
uid classes estimated on actual well-log classification �with the as-
umption that P�� �� P�� �� � for notational convenience�.
z1 z1 z0

EG license or copyright; see Terms of Use at http://segdl.org/
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Probabilistic petrophysical estimation O25
REAL-CASE APPLICATION

ethodology implementation

The methodology application is described for an oil-saturated
lastic reservoir, but it can be adapted to different saturation and li-
hology reservoir conditions, with the choice of a suitable rock-
hysics model.

First, a rock-physics model is calibrated at well locations using
elocity logs and petrophysical curves obtained in formation evalua-
ion analysis. The rock-physics model can be written as

�VP,VS,��� fRPM��,sw,C���, �19�

here VP and VS are, respectively, P- and S-waves velocities, � is the
ensity, � is the effective porosity, sw is the water saturation, C is the
lay content, and � is the error that represents the difference between
odel predictions and real data. Function fRPM can be an empirical

elation or a theoretical set of equations such as granular media mod-
ls or effective media models �see Mavko et al., 2003�.

Second, we estimate elastic attributes from seismic data. We use a
eformulation of the approximation of Zoeppritz equations by Aki
nd Richards �1980� in terms of impedances, and we jointly estimate
- and S-impedances and density following the Bayesian approach
resented in Buland and Omre �2003�. In terms of impedances, the
eflection coefficient RPP as a function of the reflection angle � be-
omes:

RPP�� � �
1

2 cos2 �

�IP

ĪP

�4
Ī S

2

Ī P
2

sin2 �
�IS

ĪS

�	1

2
�

1

2 cos2 �

�2
Ī S

2

Ī P
2

sin2 �
��

�̄
�20�

here ĪP, ĪS, and �̄ are, respectively, the averages of impedances and
ensity over the reflecting interface, and �IP, �IS, and �� are the cor-
esponding contrasts. With realistic noise levels, the inversion can-
ot retrieve reliable information about density �as in Buland and
mre, 2003�. For this reason, in our real case application we do not
se density in the petrophysical inversion workflow.

Finally, we calculate the conditional probabilities of petrophysi-
al variables and litho-fluid classes conditioned by seismics follow-
ng the methodology described in the theory section:

� We assume a prior distribution of the petrophysical variables.
In our case P��,sw,C� is assumed as a trivariate GMM to ac-
count for observed correlations between variables in each litho-
fluid class �in this case, the prior is the same at any vertical posi-
tion�.

� We generate pseudologs of petrophysical properties from the
prior distribution with a realistic vertical correlation, in two
steps. First, we create profiles of litho-fluid classes, for exam-
ple, using a first-order Markov-chain downward model �Larsen
et al., 2006�. Then, in each litho-fluid class, we generate petro-
physical properties vertically correlated using a variogram esti-
mated on well data.

� We apply the rock-physics model fRPM to the petrophysical
pseudologs to obtain the corresponding elastic attributes and
we add a random error � �equation 19�. Then, we compute fine-
scale impedances.

� Using the random samples generated in steps 2 and 3, we esti-
Downloaded 22 Oct 2011 to 128.12.212.21. Redistribution subject to S
mate the joint probability P�IP
f ,IS

f ,�,sw,C�, and we derive the
conditional probability of petrophysical properties conditioned
by impedances P��,sw,C � IP

f ,IS
f � at fine scale.

� We upscale the elastic properties applying sequential Backus
averaging on a running window, whose length is found by esti-
mating the wavelength from the seismic bandwidth and the av-
erage velocity. Then, we compute the conditional probabilities
at coarse scale:

P��,sw,C�IP
c ,IS

c��

R2

P��,sw,C�IP
f ,IS

f �

	P�IP
f ,IS

f �IP
c ,IS

c�dIP
f dIS

f . �21�

� This last conditional probability is then combined by means of
the Chapman-Kolmogorov equation �Papoulis, 1984� with the
probability of elastic properties coming from linearized Baye-
sian inversion P�IP

c,IS
c �Sz�, to obtain the posterior probability of

petrophysical properties:

P��,sw,C�Sz��

R2

P��,sw,C�IP
c ,IS

c�P�IP
c ,IS

c �Sz�dIP
cdIS

c ,

�22�

at each vertical position z.
� Finally, we estimate the probability of litho-fluid classes condi-

tioned by seismics as

P�� z�Sz��

R3

P�� z��,sw,C�P��,sw,C�Sz�d�dswdC,

�23�

and we integrate it with a Markov-chain model by means of
equation 18.

In the case of Gaussian mixture assumption, the joint distribution
P�IP

f ,IS
f ,�,sw,C� is estimated using the EM algorithm �if the rock-

hysics model were linear, the joint distribution could be analytical-
y derived from the prior�. Expectation-maximization is an iterative
lgorithm that allows us to find maximum likelihood estimates of pa-
ameters in probabilistic models in the presence of missing data. It is
two-step method. The expectation step computes an expectation of

he log likelihood with respect to the current estimate of the distribu-
ion. The maximization step maximizes the expected log likelihood
ound in the previous step. The algorithm converges to the optimal
olution in a number of steps, which depends on different factors
uch as distribution shape and data dimensions �see Hastie et al.,
002�. It is used here to estimate parameters �means and covariance
atrices� and weights of Gaussian components of the mixture for

oint distribution in the case of multimodality of the data. Once
eights and parameters of the joint distribution are known, the con-
itional distribution is analytically derived using equations 6 and 7.
Alternatively, we propose to use kernel density estimation �KDE�,

hich allows us to estimate a probability density function on a multi-
imensional grid. In this case, we apply KDE to estimate the joint
istribution P�IP

f ,IS
f ,�,sw,C�, extending equation 8 in a 5D domain.

n our implementation, we use the same kernel function �the
panechnikov kernel� for the five variables and a specific scaling

ength for each variable. The critical point of this approach is calibra-
ion of the scaling lengths: the higher they are, the farther the obser-
EG license or copyright; see Terms of Use at http://segdl.org/
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O26 Grana and Della Rossa
ations included in the distribution are from the data points. Choice
f scaling lengths depends on the number of data points and the
pread of the distribution �Doyen, 2007�. Once the joint distribution
s estimated, we compute the conditional distribution at fine scale
equation 10� by normalizing the joint distribution at each given
IP

f ,IS
f �.

In both parametric and nonparametric cases, the following steps
re similarly performed. A Gaussian model is assumed for the up-
caling step and a lognormal distribution is used for seismic inver-
ion. These two probabilities are combined with fine-scale probabil-
ties by means of the Chapman-Kolmogorov equation �equations 21
nd 22�.

ata application

The methodology has been applied to an oil-saturated clastic res-
rvoir in the North Sea, using angle-stack seismic data and well-log
ata coming from two wells in the field: wellA �relative coordinates:
�1530, y�450� used for model calibration, and well B �x�120,
�1000� used for methodology validation.
Input data for the rock-physics model are the petrophysical curves

btained in formation evaluation analysis: effective porosity, clay
ontent, and water saturation. We focus our attention on a specific
eservoir level �Figure 2�, where we can identify three litho-fluid
lasses: oil sand, water sand, and shale. Lithofacies have been ob-
ained by means of log-facies classification, on the basis of the petro-
hysical curves and the available sedimentologic information. litho-
uid discrimination still remains visible in both the petroelastic and

mpedances domains �Figure 3�.
The adopted rock-physics model is the stiff-sand model �Appen-

ix B� based on Hertz-Mindlin contact theory. The model was previ-
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igure 2. Petrophysical curves derived from log interpretation of w
ight: �a� P-impedance �well log in blue and rock physics model predi
mpedance �well log in blue and rock-physics model predictions in re
osity, �d� clay content, �e� water saturation, and �f� litho-fluid class
ellow, water sand in brown, shale in green�.
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usly calibrated on well A �Figure 4� and then used on well B data.
or the calibration, we performed a fluid substitution on velocities of
ell A to obtain corresponding velocities in wet conditions, and we
etermined the model parameters to obtain a good match with well
ata. The critical porosity used is 0.4 and the coordination number is
. Effective pressure in the reservoir is 70 MPa. For the solid phase,
e used a matrix model made by two components: sand �mostly
ade of quartz� and wet clay �mostly made of illite�, with the param-

ters indicated in Table 1. Matrix parameters have been selected on
he basis of available mineralogical information about rock compo-
ition and for the good match between model predictions and well-
og data �Figure 2�. The choice of considering clay as a mixture of

ineral and clay-bound water is coherent with the choice of using
ffective porosity.

The stiff-sand model was selected on the basis of available geo-
ogic information and because it is appropriate to describe a well-
onsolidated sand. In shale, the effective porosity is near zero, so the
ock-physics model reduces to the computation of velocities and
ensity of a matrix made of wet clay, by means of a Voigt-Reuss-Hill
verage, and we obtain a good approximation of the velocities in
hale.

We describe here implementation of the inversion methodology
nd its application to the data �we recall that R� �� sw C�T and m

�IP IS�T�. We assume that prior distribution P�R� is a Gaussian
ixture �Figure 5� whose weights are the actual proportions of litho-
uid classes. In particular, we assume a Gaussian mixture distribu-

ion with truncations for � and C, and a Gaussian mixture score
ransformation �extension of the normal score transformation� is ap-
lied to water saturation sw. The simulation and inversion are con-
ucted from Gaussian mixture scores. At the end of the simulation,
esults are back-transformed to recover the actual saturation values.
f we assume a large variability within each litho-fluid class �large

covariance matrices�, we also can generate sam-
ples that are not present in well data �Figure 5�.
The advantage of this assumption is that it allows
us to simulate the petroelastic properties of differ-
ent scenarios.

Then, we generate pseudopetrophysical curves
in two steps. We first generate profiles of litho-
fluid classes by means of a first-order Markov-
chain downward model using two transition ma-
trices P1 and P2 honoring well A proportions and
transition probabilities, respectively, above and
under the oil-water contact �at 2182 m�:

P1��0.95 0.03 0.02

0.20 0.80 0

0.01 0.01 0.98
� �24�

P2��0.95 0.03 0.02

0.06 0.94 0

0 0.19 0.81
� .

Rows correspond to shale, water sand, and oil
sand at generic depth z, and columns refer to
shale, water sand, and oil sand at depth z�1 �the
downward transition from water sand to oil sand

n
Litho-fluid classes

f)

From left to
in red�, �b� S-
effective po-
n �oil sand in
.5 1
saturatio

ell A.
ctions
d�, �c�

ificatio
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Probabilistic petrophysical estimation O27
s impossible in both cases�. If the well information is not representa-
ive of reservoir conditions, proportions of litho-fluid classes and, as
consequence, transition matrices can be modified. Then, for each

itho-fluid class, we can estimate a variogram to model the vertical
orrelation of the petrophysical properties �the results for porosity
re presented in Figure 6, as an example�, and we generate
seudologs of petrophysical properties from the prior with a realistic
ertical correlation.

Next, we apply rock-physics model fRPM to obtain the correspond-
ng pseudologs of velocities and impedances. Error � �see equation
�, added to elastic variables IP and IS, is distributed as a bivariate
aussian distribution. Its parameters �elements of the covariance
atrix� are estimated from the difference between real data and

ock-physics model predictions on well A logs �
 p�530 and 
 s

280�. Using the pseudologs generated by means of the rock-phys-
cs model, we perform upscaling using sequential Backus averaging
n a running window of about 12.5 m �estimated wavelength is
25 m and operator length is obtained as wavelength/10 as in Avseth
t al., 2005�, and we estimate the conditional probabilities at coarse
cale �equation 21�.

Finally, linearized AVO inversion is used to jointly estimate the
osterior distribution of P- and S-impedance and density. We esti-
ated the four wavelets independently for each available angle gath-

r. The trend for the prior model was obtained from well logs by fil-
ering impedances logs to a high-cut value of 4 Hz and interpolating
hese logs along the interpreted horizons. The probabilistic inversion
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igure 3. Well-log data distribution and litho-fluid classification of
ell A. �a� P-impedance versus effective porosity color coded by

itho-fluid class. �b� S-impedance versus P-impedance, color-coded
y litho-fluid class �oil sand in yellow, water sand in brown, shale in
reen�.
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pproach is based on the convolutional model and Aki-Richards lin-
arized approximation of Zoeppritz equations in the limit of vertical
eak contrasts. Elastic parameters derived from seismic inversion

re characterized by a log-Gaussian random field.
Posterior probabilities of petrophysical properties and litho-fluid

lasses are obtained by means of equations 22 and 23 and the results
re shown in the next section.

RESULTS

First, we applied the methodology using well-log data from well
and a synthetic seismic trace to verify applicability and validity of

he method. Through this feasibility step, we compare two statistical
pproaches and demonstrate coherent propagation of the uncertainty
hrough the three steps of the method.

Following the approach presented in the previous sections, we
ill show the results of the petrophysical-properties estimation in

hree different conditions: at fine scale, at coarse scale, and condi-
ioned by seismic data. In the first step, we take into account only the
ncertainty related to the rock-physics model at fine scale, without
onsidering uncertainty associated with coarse scale and with seis-
ics. To estimate the conditional distribution P�R �mf�, the EM al-

orithm was applied, assuming three mixture components �one com-
onent for each litho-fluid class� combined with the analytical ex-
ression of Gaussian mixtures. Figure 7a displays the marginal con-
itional probabilities of effective porosity, clay content, and water
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igure 4. Rock-physics model calibration on well A: velocity in wet
ondition �obtained performing a fluid substitution on well-log ve-
ocities� versus effective porosity, color-coded by clay content. The
urves are from the stiff-sand model for a mixture of wet clay and
and, with clay content equal to �from bottom to top� 0.9, 0.7, 0.5,
.3, and 0.1.

able 1. Rock-physics model parameters: density �, bulk
odulus K, and shear modulus � of the matrix components.

� �g /cm3� K �GPa� � �GPa�

et clay 2.5 20 8

and 2.7 33 36
EG license or copyright; see Terms of Use at http://segdl.org/



a

b

F
t
�
s
b

a

F
c
o

O28 Grana and Della Rossa

Downloaded 22 Oct 2011 to 128.12.212.21. Redistribution subject to S
saturation extracted from P�R �mf� at fine scale.
Because the rock-physics model is accurate, the
uncertainty propagated to petrophysics is quite
small and the petrophysical-properties estimation
honors the actual curves of effective porosity,
clay content, and water saturation derived from
log interpretation.

Figure 7b shows results of the probability esti-
mation �equation 21� conditioned by upscaled
impedances obtained by applying sequential
Backus averaging to rock-physics model predic-
tions: the probabilistic upscaling step allows us to
take into account the uncertainty associated with
the scale change. Comparison between Figure 7a
and b clarifies the impact of coarse resolution on
uncertainty, which is, as expected, larger in the
second case P�R �mc�, especially for water satu-
ration.

Finally, we combined the results of the statisti-
cal rock-physics model with seismic inversion
performed with the Bayesian approach, by means
of equation 22, to obtain an estimation of petro-
physical properties conditioned by seismic data
P�R �Sz�. As a feasibility step, we applied the
methodology using synthetic seismic data with a
signal-to-noise ratio �S/N� equal to 5. Conditional
distributions �Figure 8a� show the multimodality
of the petrophysical data and the increase of un-
certainty, in particular in sequences of thin layers.
In the case of multimodal data, the median is not a
good estimator, but we can observe that the prob-
ability distributions still capture the bimodality of
petrophysical properties.

Now we compare the previous results at seis-
mic scale obtained using Gaussian mixture mod-
els with results obtained using the kernel density
approach �Figure 8�. The two results are quite
similar: in both cases, petrophysical inversion
can capture the bimodality of each variable. The
top of the reservoir is characterized by a thick,
high-porosity, oil-sand layer, and it is well detect-
ed in both cases. In this application, Gaussian
mixtures are an appropriate solution and they pro-
vide a good result because the litho-fluid classifi-
cation of well data �which identifies the compo-
nents of the mixture� allows a good discrimina-
tion of petrophysical and elastic properties. Also,
the approach based on KDE provides a good esti-
mation of the posterior probability because kernel
density estimation recognizes the multimodality
of the data if the scaling lengths are correctly cho-
sen. With respect to the GMM approach, the non-
parametric approach is more computationally de-
manding and it requires tuning of the scaling
length parameters.

Even though the linear correlation coefficients
cannot be used as a full quantitative measure of
the inversion quality in the case of multimodal
distributions, we tried to evaluate the quality of
the match between the inversion results and real
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Probabilistic petrophysical estimation O29
ata by computing the correlation coefficients between estimated
etrophysical properties and the actual curves �Table 2�. Analysis of
he correlation coefficients confirms what we observed from the
robability densities, in particular, how the scale change affects the
ncertainty.

The method also has been applied in a discrete domain, for litho-
uid classification based on seismic data. From the probability dis-

ributions of petrophysical properties, we predicted litho-fluid class-
s �equation 23� at the location of well A, and we used the resulting
osterior probabilities to generate multiple realizations of litho-flu-
d-class vertical sequences. The rock-physics
ikelihood P�� z �R� has been estimated using
etrophysical curves and litho-fluid classifica-
ion, assuming a Gaussian distribution for each
itho-fluid class.

Results of the classification conditioned by
eismic are shown in Figure 9a: we can observe a
igh probability value for the oil-sand class, re-
ecting the thick, high-porosity sand layer at the

op of the reservoir. It is important to observe that,
ven though the maximum a posteriori �MAP� of
robabilities of litho-fluid classes is not a good
stimator in this case, fluctuations of the proba-
ility curves have a good match with the actual
rofile of litho-fluid classes and they can be used
s a prior probability for multiple realizations. In-
egrating the probability of litho-fluid classes
onditioned by seismics with probability ob-
ained from transition matrices �equation 18�, we
an generate several realizations of litho-fluid-
lass profiles at well locationA �Figure 9b�.

We used contingency analysis �Table 3� to
valuate misclassification errors, comparing
he maximum a posteriori of the probability
�� z �Sz� with the actual classification. In the
ontingency table, we computed the absolute fre-
uencies, reconstruction rate, recognition rate,
nd estimation index. The reconstruction rate is
btained by normalizing the frequency table per
ow, and the recognition rate is obtained by nor-
alizing the frequency table per column. The re-

onstruction rate represents the percentage of
amples belonging to a litho-fluid class �actual�,
hich are classified in that class �predicted�. The

ecognition rate represents the percentage of sam-
les classified in a litho-fluid class �predicted�
hat actually belong to that class �actual�. Infor-

ation concerning under/overestimation can be
nferred from the estimation index, which is de-
ned as the difference between the reconstruction
ate and recognition rate. A negative estimation
ndex in the main diagonal indicates underesti-

ation, and a positive estimation index indicates
verestimation; the off-diagonal terms describe
n which class the samples are misclassified. In
ur case, oil sand could be reconstructed by
0.5% by the inversion algorithm and recognized
y 62.5%, thus, sand is overestimated �estimation
ndex 8%�. The actual oil-sand samples not de-
ected by the inversion are mostly classified in
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hale �96 samples, reconstruction rate 19.4%�. The recognition rates
f predicted oil sand tell us that some shale samples �108� and water-
and samples �101� are classified in oil sand, which is the reason for
he overestimation of oil sand. Similarly, the negative estimation in-
ex for water sand ��7.8%� in the main diagonal of the contingency
able shows an underestimation of water sand. In some cases, we
annot discriminate water sand from actual shale and oil sand from
ctual water sand �relatively high estimation index of predicted
ater sand in actual shale and of predicted oil sand in actu-
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O30 Grana and Della Rossa
l water sand�. This result can be justified by the rock-physics tem-
late �Figure 3�, where we can note the overlaps between those class-
s. Misclassification between oil sand and shale is due mainly to the
pscaling effect on thin layers.

Finally, we applied the methodology to the whole reservoir level
sing real seismics to obtain 3D volumes of petrophysical properties
ith the associated uncertainty. First, we performed a Bayesian in-
ersion on a small 3D volume, including wellA �used for rock-phys-
cs model calibration� and well B �used for methodology validation�.
he seismic volume �four angle gathers available� contains about
0,000 traces in a time window corresponding to a depth interval of
pproximately 250 m. In Figure 10, we display two seismic sections
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igure 8. Petrophysical-properties estimation con-
itioned by synthetic seismic data at well A loca-
ion: effective-porosity, clay-content, and water-
aturation probability distributions extracted from
�R �Sz�, computed with �a� GMM and �b� KDE.
he background color is the conditional probabili-

y. Black lines are the actual petrophysical curves,
ed dashed lines represent P10, median, and P90.
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related to the partial angle stacks 20° and 44°�, passing through the
wo wells. In Figure 11, we show the prior model used for inversion
nd the inverted values with the associated uncertainties at well loca-
ions. The corresponding inverted impedances sections IP and IS, es-
imated by Bayesian inversion, are displayed in Figure 12.

The final result of this study is the posterior probability of petro-
hysical properties on the entire 3D volume. Figure 13 shows the
robability distributions of effective porosity at three locations
long the 2D section passing through the wells. Comparison be-
ween actual effective-porosity curves and estimated probabilities
ives evidence that at the top of the reservoir, estimation is more ac-
urate than in the lower part. In Figure 14, we display the maximum a
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posteriori of the posterior probabilities of effec-
tive porosity, clay content, and water saturation.
In the upper part of the reservoir, we can clearly
detect the overcap clay and the top of the reser-
voir, characterized by a high-porosity sand filled
by oil. In the lower part, thin layers observed in
the well logs are not detected and the uncertainty
associated with the inverted properties increases.
This is mainly due to quality of the seismic data,
which is higher at the top �S/N�3� and very poor
at the bottom �S/N�1�, as we can observe in the
seismic sections �Figure 10�.

We also performed a litho-fluid classification
based on seismic data. Figure 15 shows the curves
of conditional probabilities of litho-fluid classes
at the location of wellA, conditioned by the corre-
sponding seismic trace and some realizations ob-
tained integrating the posterior probability of
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orrelation
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Figure 9. Litho-fluid probabilistic classification
conditioned by synthetic seismics at well A loca-
tion. �a� From left to right: probabilities of litho-
fluid classes P�� z �Sz� based on petrophysical in-
version, MAP of the probability and actual litho-
fluid classes. �b� Some realizations obtained with a
Markov-chain approach �oil sand in yellow, water
sand in brown, shale in green�.
able 2. Correlation coefficients between estimated petrophysical pr
nd real data at well A location.
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O32 Grana and Della Rossa
itho-fluid classes with the Markov-chain model. The quality of Mar-
ov-chain realizations is acceptable at the top of the reservoir and
uite poor at the bottom, where the S/N of seismic data is very low.

Figure 16 illustrates results for the 3D volume �for example, for
ffective porosity� by extracting a crossline passing for well B and
n inline for wellA. Finally, in Figure 17, we propose a 3D visualiza-
ion of hydrocarbon-sands probability: the oil-sand probability cube
as been truncated to reveal areas where the probability of oil-sand
itho-fluid-class occurrence is greater than 0.7.

DISCUSSION

The feasibility test based on synthetic seismics shows propaga-
ion of different sources of uncertainty through different steps and
he applicability of this methodology with both proposed statistical
pproaches. The real-case application, integrating well data and real
eismics, shows that the results are quite satisfactory as long as the
uality of the seismics is acceptable. In particular, the use of Gauss-
an mixtures seems to be a valid approach for classification of petro-
hysical and categorical parameters, which can be applied to real
ases with reduced computational time.

Application of the rock-physics model is not computationally de-
anding, whereas estimation of the conditional probability in a
ayesian framework can be quite hard to obtain because it requires
stimation of the joint distribution in a space of high dimensions.

able 3. Contingency analysis of petrophysical-properties
stimation at well A location (f is absolute frequency, R is
econstruction rate, r is recognition rate, and E is the
stimation index).

Predicted
shale

Predicted water
sand

Predicted oil
sand

hale

f 472 104 108

69.0% 15.2% 15.8%

69.2% 40.0% 19.4%

�0.2% �24.8% �3.6%

ater sand

f 114 106 101

35.5% 33.0% 31.5%

16.7% 40.8% 18.1%

18.8% �7.8% 13.4%

il sand

f 96 50 349

19.4% 10.1% 70.5%

14.1% 19.2% 62.5%

5.3% �9.1% 8.0%
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aussian mixture models are a suitable solution because of their an-
lytical convenience, especially when the distributions of petro-
hysical and elastic attributes describe features of different litho-flu-
d classes. The nonparametric alternative, kernel-density estimation,
s more computationally demanding because it requires numerical
valuation of a joint probability on a multidimensional domain. A
ore efficient method to tackle the multidimensional extension of
DE is based on fast Fourier transform �FFT�. In fact, KDE also can
e seen as a convolution, so that we can reduce computational time
y realizing the convolution by means of FFT �Buland et al., 2008�.
owever, one of the most critical points in estimating probabilities
y means of kernel density is the choice of scaling length parame-
ers, which must be determined through different trials.

The main simplification we adopted in our approach is overlook-
ng the spatial correlation of petrophysical variables for the estima-
ion of conditional distributions, to reduce the dimension of the
robability space. We do take into account the vertical correlation in
eismic inversion by including a vertical correlation in the prior co-
ariance matrix of the vector of elastic parameters and in the prior
ovariance matrix of the error on seismic amplitudes for each angle
ather �Buland and Omre, 2003�. However, the spatial correlation is
ot explicitly accounted for because we adopt a trace-by-trace inver-
ion approach to jointly estimate impedances and densities from
eismics. We remark that the lateral continuity of our results is main-
y related to the imaging: in fact, part of the lateral correlation of seis-

ic data is imposed by the migration operator which is a spatial filter
hose correlation length is associated with the Fresnel zone.
To perform the final step from continuous petrophysical variables

o litho-fluid-class modeling, Gaussian mixture models seem to be
n appropriate approach as they can express the multimodal features
f petrophysical variables in different litho-fluid classes. Integration
f more advanced geostatistical techniques could be a significant
mprovement to use probabilistic information related to litho-fluid
lasses to generate multiple realizations for reservoir characteriza-
ion.

Well B Well A

D
ep

th
(m

)

2050

2100

2150

2200

2250

300 600 900 1200 1500 1800 2100 2400
Distance (m)

D
ep

th
(m

)

2050

2100

2150

2200

2250

300 600 900 1200 1500 1800 2100 2400
Distance (m)

a)

b)
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nd well B �on the left�: �a� angle stack 20°, and �b� angle stack 44°.
EG license or copyright; see Terms of Use at http://segdl.org/



a

b

Probabilistic petrophysical estimation O33
Prior model
P10 prior
P90 prior
Well log
Upscaled log
Inverted log
P10 inversion
P90 inversion

3000 5000 7000
I (m/s g/cm3)S

5000 9000 13000
I (m/s g/cm3)P

3000 5000 7000
I (m/s g/cm3)S

2060

2080

2100

2120

2140

2160

2180

2200

2220

2240

5000 9000 13000
I (m/s g/cm3)P

D
ep

th
(m

)

Well A Well BWell BWell Aa) b) c) d) Figure 11. Prior model and posterior distributions
at wells locations. �a� P-impedance of wellA, �b� S-
impedance of well A, �c� P-impedance of well B,
and �d� S-impedance of well B. Blue curves are the
actual logs, green curves represent the upscaled
data, black curves are the prior model, and red
curves represent the inverted values. Dashed lines
represent P10 and P90.
12000

11000

10000

9000

8000

7000

6000

I (m/s g/cm3)P

300 600 900 1200 1500 1800 2100 2400
Distance (m)

2050

2100

2150

2200

2250

Well B Well A

D
ep

th
(m

)

7000
6500
6000
5500
5000
4500
4000
3500
3000

I (m/s g/cm3
S )

300 600 900 1200 1500 1800 2100 2400
Distance (m)

2050

2100

2150

2200

2250

D
ep

th
(m

)

)

)

Figure 12. Two-dimensional sections of inverted
impedances: �a� inverted P-impedance, �b� invert-
ed S-impedance.
Downloaded 22 Oct 2011 to 128.12.212.21. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/



F
r
o
t
p

F
c
t
b

O34 Grana and Della Rossa
2000

2050

2100

2150

2200

2250

300 600 900 1200 1500 1800 0
0.1

0.2

0.4
0.3

0.25

0.2

0.15

0.1

0.05

0

Probability

Distance (m)
Effective
porosity

D
ep

th
(m

)
Well B

Well A

igure 13. Probability distributions of effective po-
osity at wells locations �well A on the right, well B
n the left� and at an intermediate location between
he two wells. Black lines are the actual effective
orosity curves.
0.2

0.15

0.1

0.05

Distance (m)

D
ep

th
(m

)

Effective porosity
2050

2100

2150

2200

2250

300 600 900 1200 1500 1800 2100 2400

Well B Well A

0.7
0.6
0.5
0.4
0.3
0.2
0.1

Distance (m)

D
ep

th
(m

)

Clay content
2050

2100

2150

2200

2250

300 600 900 1200 1500 1800 2100 2400

Water saturation

0.9
0.8
0.7
0.6
0.5
0.4
0.3

Distance (m)

D
ep

th
(m

)

2050

2100

2150

2200

2250

300 600 900 1200 1500 1800 2100 2400

a)

b)

c)

igure 14. Estimations of �a� effective porosity, �b�
lay content, and �c� water saturation in the 2D sec-
ion obtained from the mode of the posterior distri-
utions.
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Figure 15. Litho-fluid probabilistic classification
conditioned by real seismics at well A location. �a�
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CONCLUSIONS

The presented methodology aims to propagate the uncertainty
rom seismic to petrophysical properties, including the effect of
cale change, seismic noise error, and the degree of approximation of
hysical models. Statistical rock physics, combined with the proba-
ilitic approach adopted for seismic inversion, has been proposed to
uantify the uncertainty. The main results of the method are the
robability distributions of estimated petrophysical parameters,
hich can be used to assess the reliability of reservoir-properties es-

imation. To obtain the posterior distribution of petrophysical prop-
rties, we note that one key point of our method is the use of Gauss-
an mixture models and identification of weights of the mixture as
he probability of litho-fluid classes.

Even though the considered uncertainty factors do not cover all
he possible sources, the 1D feasibility test shows that the main ef-
ects due to scale changes and seismic noise are taken into account
nd that these two factors can explain an important part of the uncer-
ainty.

In the application case, the method works better in the upper lay-
rs, where the signal-to-noise ratio is high, rather than in the lower
ayers, where signal-to-noise is low. In conclusion, where signal-to-
oise is acceptable, probabilistic petrophysical evaluation on the
eal case shows the applicability of the method and that reliability of
he seismic data is coherently propagated to petrophysical-proper-
ies prediction.

The proposed method can be applied to all reservoirs where elas-
ic characterization of petrophysical properties is possible and where
he physical link can be described by a suitable rock-physics model.
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APPENDIX A

PROBABILISTIC FORMULATION

Here we recall analytical results for condition-
al distributions of Gaussian mixtures, extending
results valid in the Gaussian case. If the joint dis-
tribution is a Gaussian mixture of Nc components,
we indicate the joint probability as

P�m,R�� �
k�1

Nc

� kN�y;�y
k,�y

k� �A-1�

where y� � m
R �. The mean and covariance of

each component are given by

�y
k ���m

k

�R
k �, �y

k ���m,m
k �m,R

k

�R,m
k �R,R

k � .

�A-2�

Then conditional distribution P�R �m� is
gain a Gaussian mixture �see, for example, Dovera and Della
ossa, 2007�:

P�R�m�� �
k�1

Nc

�kN�R;�R�m
k ,�R�m

k � . �A-3�

ere, �k are the weights of the conditional distribution

�k�m��
� kN�R;�R�m

k ,�R�m
k �

���1

Nc ��N�R;�R�m
� ,�R�m

� �
, �A-4�

nd the mean and covariance of each component of the conditional
istribution can be analytically derived as

�R�m
k ��R

k ��R,m
k ��m,m

k ��1�m��m
k � �A-5�

nd

�R�m
k ��R,R

k ��R,m
k ��m,m

k ��1�m,R
k �A-6�

or each given m.

APPENDIX B

ROCK-PHYSICS MODEL

The stiff-sand model is based on Hertz-Mindlin grain-contact
heory �see Mavko et al., 2003�. This model provides estimations for
ulk KHM and shear �HM moduli of a dry rock, assuming that the sand
rame is a dense random pack of identical spherical grains subject to
n effective pressure P with a given porosity �0 and an average num-
er of contacts per grain n �coordination number�:

KHM��3 n2�1��0�2�mat
2 P

18�2�1���2 �B-1�

nd

Probability
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�HM�
5�4�

10�5�
�3 3n2�1��0�2�mat

2 P

2�2�1���2 , �B-2�

here � is the grain Poisson’s ratio and �mat is the matrix shear mod-
lus.

Matrix elastic moduli are obtained by Voigt-Reuss-Hill averages
or a matrix made of two components, wet clay �mixture of clay and
lay-bound water� and sand:

Kmat�
1

2�CKc� �1�C�Ks

1��
�

1��

C

Kc
�

1�C

Ks
� �B-3�

nd

�mat�
1

2�C�c� �1�C��s

1��
�

1��

C

�c
�

1�C

�s
�,

�B-4�

here C is the volume of wet clay, � is the effective porosity, and Kc,
c, Ks, and �s, are, respectively, the bulk and shear moduli of wet
lay and sand.

For effective porosity values between zero and the critical poros-
ty �0, this model connects the solid-phase elastic moduli Kmat and

mat respectively, with the elastic moduli KHM and �HM of the dry
ock at porosity �0, by interpolating these two end members at the
ntermediate effective-porosity values by means of the modified
ashin-Shtrikman upper bound:

Kdry�� � /�0

KHM�
4

3
�mat

�
1�� /�0

Kmat�
4

3
�mat�

�1

�
4

3
�mat,

�B-5�

�dry�� � /�0

�HM�
1

6

 �mat

�
1�� /�0

�mat�
1

6

 �mat�

�1

�
1

6

 �mat,

�B-6�

here


 �
9Kmat�8�mat

Kmat�2�mat
.

Gassmann’s equations are used for calculating the effect of fluid
n velocities using matrix and fluid properties �see Dvorkin et al.,
007 for the use of effective porosity in Gassmann�:

Ksat�Kdry�

	1�
Kdry

Kmat

2

�

Kfl
�

1��

Kmat
�

Kdry

Kmat
2

�B-7�

nd

� �� . �B-8�
sat dry
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rom the saturated-rock elastic moduli, we finally obtain velocities
s

VP�
�Ksat�

4

3
�sat

�
�B-9�

nd

VS���sat

�
, �B-10�

here � is the density of the saturated rock, estimated as a weighted
inear average.
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