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ABSTRACT

The prediction of rock properties in the subsurface from geo-
physical data generally requires the solution of a mathematical
inverse problem. Because of the large size of geophysical (seis-
mic) data sets and subsurface models, it is common to reduce the
dimension of the problem by applying dimension reduction meth-
ods and considering a reparameterization of the model and/or the
data. Especially for high-dimensional nonlinear inverse problems,
in which the analytical solution of the problem is not available in
a closed form and iterative sampling or optimization methods
must be applied to approximate the solution, model and/or data
reduction reduce the computational cost of the inversion. How-
ever, part of the information in the data or in the model can be lost
by working in the reduced model and/or data space. We have
focused on the uncertainty quantification in the solution of the

inverse problem with data and/or model order reduction. We
operate in a Bayesian setting for the inversion and uncertainty
quantification and validate the proposed approach in the linear
case, in which the posterior distribution of the model variables
can be analytically written and the uncertainty of the model pre-
dictions can be exactly assessed. To quantify the changes in
the uncertainty in the inverse problem in the reduced space,
we compare the uncertainty in the solution with and without data
and/or model reduction. We then extend the approach to nonlin-
ear inverse problems in which the solution is computed using an
ensemble-based method. Examples of applications to linearized
acoustic and nonlinear elastic inversion allow quantifying the im-
pact of the application of reduction methods to model and data
vectors on the uncertainty of inverse problem solutions. Examples
of applications to linearized acoustic and nonlinear elastic inver-
sion are shown.

INTRODUCTION

Most of the modeling problems in geophysics can be written as
mathematical inverse problems in which the values of the properties
of interest are estimated from a set of indirect geophysical measure-
ments. Examples of inverse problems in geophysics include seismic
inversion for the prediction of elastic properties (Aki and Richards,
1980; Sheriff and Geldart, 1995; Sen and Stoffa, 2013); rock phys-
ics inversion for the prediction of reservoir properties (Doyen, 2007;
Bosch et al., 2010; Azevedo and Soares, 2017); controlled-source
electromagnetic inversion for the estimation of electrical resistivity
(Chen et al., 2007; Tompkins et al., 2011; MacGregor, 2012); and
inversion of tomographic, time-lapse seismic, and gravity data. Re-
views of inverse methods for geophysical problems can be found in
Tarantola (2005), Aster et al. (2011), and Sen and Stoffa (2013).

One of the main challenges in geophysical inverse problems for
the prediction of rock properties in the subsurface based on large,
noisy, low-resolution geophysical data sets is the nonuniqueness of
the solution. Therefore, the quantification of the uncertainty in the
solution of the inverse problem (i.e., the uncertainty of the predicted
values of the model variables) should be as important as the pre-
diction of the most likely model. In geophysical inverse problems,
probabilistic methods are often used to quantify the uncertainty in
the model predictions through the probability distributions of the
model variables given the geophysical data (Tarantola, 2005). The
Bayesian approach is the most common probabilistic method used
for geophysical inverse problems (Scales and Tenorio, 2001; Ulrych
et al., 2001; Buland and Omre, 2003; Tarantola, 2005). Several
applications of the Bayesian approach to geophysical inverse prob-
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lems, under different statistical assumptions and with different geo-
physical models, have been proposed (Sen and Stoffa, 1996; Buland
and Omre, 2003; Eidsvik et al., 2004; Hansen et al., 2006; Larsen
et al., 2006; Chen et al., 2007; Gunning and Glinsky, 2007; Bosch
et al., 2009; Ulvmoen and Omre, 2010; Rimstad et al., 2012; Grana
2016; Jullum and Kolbjørnsen, 2016; Grana et al., 2017; de Figueir-
edo et al. 2018). Monte Carlo and Markov chain Monte Carlo meth-
ods have also been proposed to iteratively approximate the posterior
distribution (Hastings, 1970; Mosegaard and Tarantola, 1995; Sam-
bridge and Mosegaard, 2002; de Figueiredo et al., 2019). Stochastic
sampling methods such as the ensemble Kalman filter, probability
perturbation method, gradual deformation, and ensemble smoother
(Evensen, 2007; Oliver et al., 2008; Emerick and Reynolds, 2013;
Chen and Oliver, 2017) are more commonly used in data assimi-
lation problems for reservoir engineering rather than geophysics.
However, the uncertainty inferred from posterior distributions

of the model variables only accounts for the uncertainty in the data
and the physical relations between data and model variables. Gen-
erally, the uncertainty quantification does not account for errors in
the data processing or reparameterizations of the model parameters.
A discussion about the uncertainty in inverse problems with biased
data can be found in Oliver and Alfonzo (2018). Model and data
reduction methods (Hastie et al., 2002) are commonly used to re-
duce the computational complexity of the inverse problem. Several
dimension reduction methods have been proposed in the literature
to reduce the dimension of the model and/or data spaces. Examples
of dimension reduction methods include, among the others, principal
component analysis (PCA) (Jolliffe, 2011), multidimensional scaling
(MDS) (Cox and Cox, 2000), wavelet transforms (Rao, 2002), and
recent machine-learning algorithms (Bishop, 2006). Examples of ap-
plications in geosciences include mostly studies in the reservoir en-
gineering field (Satija and Caers, 2015; Scheidt et al., 2015, 2018;
Sun et al., 2017; He et al., 2018; Jeong et al., 2018; Lima et al.,
2019) as well as in geophysical inverse problems (Dejtrakulwong
et al., 2012; Azevedo et al., 2013; Liu and Grana, 2018). The reduc-
tion of the dimension of the data and model vectors generally
improves the computational efficiency of the physical operators.
However, the loss of information due to the lower dimension of
the problem leads to underestimation or overestimation of the uncer-
tainty in the solution of the problem. Studies on uncertainty assess-
ment for inverse problems and the impact of data and/or model
reduction on uncertainty quantification are still missing in geophysics.
We investigate the uncertainty of the solution of geophysical in-

verse problems with and without data and/or model dimension reduc-
tion methods. We propose a complete assessment of the uncertainty
using numerical examples in two different settings: in a Bayesian set-
ting for linear inverse problems with analytical solutions and for non-
linear inverse problems, in which the solution is obtained using a
stochastic sampling method, namely, the ensemble smoother with
multiple data assimilation (ES-MDA) (Emerick and Reynolds, 2013).

METHODOLOGY

The goal of this study is to investigate the uncertainty in the pre-
dictions of model variables m given a set of measured data d in geo-
physical inverse problems with and without data and/or model
reparameterization. We assume that the set of physical relations g,
i.e., the operator that models the data response for known model var-
iables, is known. The forward problem can be written in the general
form

d ¼ gðmÞ þ e; (1)

where e represents the measurement errors. For linear operators, if we
indicate with G the matrix associated with the operator g, the forward
problem can then be rewritten as

d ¼ Gmþ e: (2)

Deterministic and probabilistic methods for inverse problems have
been widely studied in the field of geophysics (Tarantola, 2005; Aster
et al., 2011; Sen and Stoffa, 2013). Peculiar issues related to geo-
physical inverse problems include the low signal-to-noise ratio of
the data, band-limited nature of the data, spatial correlations of model
properties, and accuracy and approximations of the geophysical
operators (such as seismic wave propagation and rock physics
modeling).
Because the interest is on uncertainty quantification, we focus on

probabilistic methods, specifically on Bayesian inversion methods,
with the goal of computing the posterior distribution pðmjdÞ of the
model variables m given the measured data d. In this approach, the
uncertainty is interpreted as the variance of the posterior distribu-
tion. For a general inverse problem as shown in equation 1, the pos-
terior distribution pðmjdÞ is the product of the prior distribution
pðmÞ of the model variables m and the conditional probability
pðdjmÞ of the data d given the model variablesm divided the prob-
ability pðdÞ of the data:

pðmjdÞ ¼ pðdjmÞpðmÞ
pðdÞ : (3)

The probability pðmÞ is the probability distribution of the model
properties before integrating the information obtained from the data,
the probability pðdjmÞ is the likelihood of observing the data d for a
given value of the model variablesm, and the pðdÞ is a normalizing
constant to make the posterior distribution pðmjdÞ a valid proba-
bility density function (i.e., ∫pðmjdÞdm ¼ 1).
For linear inverse problems (equation 2), under specific statistical

assumptions, the posterior distribution pðmjdÞ can be analytically
written in a closed form. In the linear case, if the errors are inde-
pendent of the model m and Gaussian distributed with 0-mean and
known covariance matrix Σd, pðeÞ ¼ Nðe; 0;ΣdÞ, then the likeli-
hood pðdjmÞ is a Gaussian distribution. If the prior probability dis-
tribution is Gaussian pðmÞ ¼ Nðm;μm;ΣmÞ, then the posterior
pðmjdÞ is also a Gaussian distribution:

pðmjdÞ ¼ Nðm;μmjd;ΣmjdÞ; (4)

with analytical expressions for the conditional mean μmjd and con-
ditional covariance matrix Σmjd:

μmjd ¼ μm þ ΣmGTðGΣmGT þ ΣdÞ−1ðd −GμmÞ; (5)

Σmjd ¼ Σm − ΣmGTðGΣmGT þ ΣdÞ−1GΣm: (6)

Several dimension reduction methods can be applied to reduce
the dimension of the model and/or data vectors. Because of the
simplicity of the implementation, we focus on linear dimension
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reduction and adopt PCA, but any other method could be used. PCA
computes a set of uncorrelated variables from observed correlated
variables with the full observed variance. The dimension of an in-
verse problem with large data and/or model spaces can be reduced
by applying PCA to the covariance matrix Σ, using the eigenvalues/
eigenvectors decomposition or truncated singular value decompo-
sition (SVD) (for large problems) and selecting a subset of eigen-
vectors (principal components) corresponding to the larger singular
values. By applying the eigenvalues/eigenvectors decomposition
theorem (Golub and Van Loan, 2013), the covariance matrix Σ
of any probability distribution can be written as Σ ¼ VΛVT , where
V is the matrix of orthogonal eigenvectors and Λ is the diagonal
matrix Λ ¼ diagðλ1; : : : ; λnÞ with the corresponding eigenvalues
λi¼1; : : : ;n. Given a set of n spatially correlated random variables
x ¼ ðx1; : : : ; xnÞT representing realizations of the property of inter-
est at different locations, for example, data observations, with mean
μ ¼ ðμ1; : : : ;μnÞT and covariance matrix Σ ¼ VΛVT , the vector x
can be approximated as a linear combination of a subset of ~n ≤ n
eigenvectors:

x ≈ μþ ~V ~x; (7)

where ~V is the truncated matrix, of size n × ~n, including the ~n prin-
cipal eigenvectors (matrix columns) and ~x is a vector of length ~n,
representing the reduced sample vector. The reduced vector ~x can be
then computed as

~x ≈ ~V−1ðx − μÞ ≈ ~VTð ~V ~VTÞ−1ðx − μÞ; (8)

where ~V−1 is the generalized inverse matrix of the truncated matrix
~V. Equation 8 is exact only if n ¼ ~n; otherwise, it is an approxi-
mation due to the truncation. The number of samples ~n is generally
chosen by arranging the eigenvalues in decreasing order and choos-
ing a subset of the first ~n eigenvectors associated with the ~n eigen-
values that represents a fraction fσ of the total variance:

X~n

i¼1

λi ≥ fσ
Xn
j¼1

λj: (9)

Data dimension reduction

We first apply PCA to the data vector for data reduction. The data
vector d might represent, for example, the seismogram at a given
location. By applying the PCA-based data reduction, we obtain

~d ¼ ~V−1
d ðd − μdÞ; (10)

where ~Vd is the truncated matrix of the principal eigenvectors and
~V−1
d is its generalized inverse. We then reformulate the inverse prob-

lem in equation 2, using the reduced data vector in equation 10:

~dþ ~V−1
d μd ¼ ~V−1

d Gmþ ~V−1
d e ≡Hmþ e ~d; (11)

where e ~d ≡ ~V−1
d e is the reduced noise with 0-mean and covariance

matrix Σ ~d ¼ ~VdΣd
~VT
d . The operators G and ~V−1

d are linear; hence,
the operator H ≡ ~V−1

d G is also linear. If the prior probability distri-
bution of the model m is Gaussian, pðmÞ ¼ Nðm;μm;ΣmÞ, then,
the posterior pðmj ~dÞ is also a Gaussian distribution:

pðmj ~dÞ ¼ Nðm;μmj ~d;Σmj ~dÞ (12)

with conditional mean μmj ~d and conditional covariance matrix Σmj ~d:

μmj ~d ¼ μm þ ΣmHTðHΣmHT þ Σ ~dÞ−1ð ~dþ ~V−1
d μd −HμmÞ

(13)

Σmj ~d ¼ Σm − ΣmHTðHΣmHT þ Σ ~dÞ−1HΣm; (14)

respectively. The multivariate Gaussian distribution pðmj ~dÞ in
equations 12–14 is the solution of the inverse problem in equa-
tion 11 with reduced data ~d.

Model dimension reduction

Similarly, we can apply PCA to the model vector for model re-
duction and derive the solution of the inverse problem in equation 2
with a reduced model vector ~m∶

~m ¼ ~V−1
m ðm − μmÞ; (15)

where ~Vm is the truncated matrix of the principal eigenvectors. We
then reformulate the inverse problem in equation 2, using the re-
duced model vector in equation 15:

d −Gμm ¼ G ~Vm ~mþ e ≡ F ~mþ e: (16)

If the prior probability distribution of the model m is Gaussian,
pðmÞ ¼ Nðm;μm;ΣmÞ, then the prior distribution pð ~mÞ of the re-
duced model ~m is a Gaussian distribution with μ ~m and covariance
matrix Σ ~m, pð ~mÞ ¼ Nð ~m;μ ~m;Σ ~mÞ. By construction, the mean μ ~m

of the reduced model ~m is 0, and the covariance matrix Σ ~m contains
the truncated eigenvalues fλmigi¼1; : : : ; ~n of the prior covariance
matrix Σm ¼ VmΛmVT

m, with Λm ¼ diagðλm1; : : : ; λmnÞ.
The operatorsG and ~Vm are linear; hence, the operator F ≡G ~Vm

is also linear. Then, the posterior distribution pð ~mjdÞ of the reduced
model given the data is also a Gaussian distribution

pð ~mjdÞ ¼ Nð ~m;μ ~mjd;Σ ~mjdÞ (17)

with conditional mean μ ~mjd and conditional covariance matrix
Σ ~mjd:

μ ~mjd ¼ Σ ~mFTðFΣ ~mFT þ ΣdÞ−1ðd −GμmÞ (18)

Σ ~mjd ¼ Σ ~m − Σ ~mFTðFΣ ~mFT þ ΣdÞ−1FΣ ~m: (19)

The solution of the inverse problem in equation 16 is the posterior
distribution pðmjd; ~mÞ of the model m given the data d and the
reduced model ~m. Because the transformation in equation 15 is lin-
ear, the posterior distribution pðmjd; ~mÞ can be computed as

pðmjd; ~mÞ ¼ Nðm;μmjd; ~m;Σmjd; ~mÞ (20)

Dimension reduction in Bayesian inversion M17
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with conditional mean μmjd; ~m and conditional covariance matrix
Σmjd; ~m:

μmjd; ~m ¼ μm þ ~Vmμ ~mjd (21)

Σmjd; ~m ¼ ~VmΣ ~mjd ~V
T
m: (22)

The formulation in equations 4–6 of the full inverse problem
(equation 2) and the formulations in equations 12–14 and 20–22
of the solutions of the inverse problems with reduced data (equa-
tion 11) and reduced model (equation 16), respectively, are used
to quantify the changes in the uncertainty with and without order
reduction.

Nonlinear inverse problems

We then extend the dimension reduction method to nonlinear in-
verse problems. Linear and nonlinear dimension reduction methods
can be applied. We limit our discussion to linear dimension reduction
methods applied to nonlinear inverse problems, but analogous con-
siderations can be done for nonlinear dimension reduction methods
as well. Several probabilistic methods have been proposed for non-
linear inverse problems. Ad hoc methods have been developed for
geophysical inverse problems to account for the spatial correlation
of the model parameters. We adopt here an ensemble-based method,
namely, the ES-MDA (Emerick and Reynolds, 2013), but the same
approach could be applied using any stochastic inverse method, such
as Markov chain Monte Carlo or stochastic optimization algorithms.
In ensemble-based methods, a set of initial realizations of the

model property is sampled from a prior Gaussian
distribution, for example, using geostatistical
simulation methods (Doyen, 2007), and then the
realizations are iteratively updated using a Baye-
sian approach based on the Kalman filter equa-
tions (Evensen, 2007). Because the forward
operator in the inverse problem is nonlinear, the
covariance matrix of the model properties cannot
be analytically computed; therefore, it is approxi-
mated using the sample covariance matrix of the
ensemble of models obtained in the previous iter-
ation of the inverse method. Therefore, the ensem-
ble of models must be large enough to avoid the
collapse of the ensemble. If the ensemble size is
small, other methods such as covariance localiza-
tion or covariance inflation could be used
(Evensen, 2007). In the ensemble smoother, all
the data are assimilated simultaneously, whereas
in other ensemble-based methods, such as the en-
semble Kalman filter, data are assimilated sequen-
tially (Evensen, 2007). In the ES-MDA, the data
are assimilated multiple times with inflation fac-
tors of the covariance matrix.
The method can be summarized as follows. We

define the number of iterations N and the inflation
coefficients fαigi¼1; : : : ;N with

P
N
i¼1 α

−1
i ¼ 1.

We sample an initial set of Ne realizations
fm0

jgj¼1; : : : ;Ne
of the model properties and com-

pute the forward operator to compute the predicted

Figure 1. Synthetic example of linear seismic inversion. (a) Loga-
rithm of acoustic impedance (the solid black line represents the well
log, the solid blue line represents the mean of the prior distribution,
the dashed blue lines represent the 95% confidence interval);
(b) measured seismic data (zero-offset).

Figure 2. Bayesian linear seismic inversion for the logarithm of P-impedance with and
without data reduction. Plots (a and b) show the comparison between BLI and BLI with
90% variance data reduction; plots (c and d) show the comparison between BLI and BLI
with 75% variance data reduction. The blue lines represent the posterior distribution and
the predicted data from BLI, the green lines represent the BLI with reduced data, and the
solid black lines represent the reference model and data. The dashed lines represent the
95% confidence interval.
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data fd0jgj¼1; : : : ;Ne
. At each iteration and for each ensemble member,

we apply a perturbation to the data vector d and obtain the perturbed
data dp ¼ dþ ffiffiffiffi

αi
p Σ1∕2

d zd, where zd ∼ Nð0; InÞ, where n is the
length of the data. At each iteration i, we update each ensemble
member as

mi
j ¼ mi−1

j þ Σi−1
m;dðΣi−1

d;d þ ΣdÞ−1ðdi−1j − dpjÞ
≡mi−1

j þKiðdi−1j − dpjÞ (23)

for j ¼ 1; : : : ; Ne, where Ki ≡ Σi−1
m;dðΣi−1

d;d þ ΣdÞ−1 is generally
called the Kalman gain, Σi−1

m;d is the cross-covariance matrix between
the vector of model parametersmi−1 and the vector of the correspond-
ing predicted data di−1 at the previous iteration, and Σi−1

d;d is the n × n
covariance matrix of the predicted data at the previous iteration. The
covariance matrices are estimated using the ensemble of models and
predictions.
Large data sets require a large ensemble of initial models, which

increases the computational time for complex nonlinear models. It is
a common practice in many application fields to reduce the size of the
data set and use a smaller number of elements in the ensemble of mod-
els. The data reduction can be performed by spatially subsampling the
data or by applying more sophisticated data reduction methods. Sim-
ilar to the data reduction for linear inverse problems in equation 10, we
can compute a reduced data vector ~d ¼ ~V−1

d ðd − μdÞ and update the
ensemble according to

mi
j ¼ mi−1

j þ Σi−1
m; ~d

ðΣi−1
~d; ~d

þ ΣdÞ−1ð ~di−1j − ~dpjÞ
≡mi−1

j þ ~Kið ~di−1j − ~dpjÞ (24)

where the term ~Ki ≡ Σi−1
m; ~d

ðΣi−1
~d; ~d

þ ΣdÞ−1 is the
Kalman gain for the reduced data space, ~di−1

represents the predicted data in the reduced data
space, and the term ~dp ¼ ~dþ ffiffiffiffi

αi
p Σ1∕2

~d
z ~d (with

z ~d ∼ Nð0; I ~nÞ, where ~n is the length of the reduced
data) is the perturbation of the observed data in the
reduced data space. The parameters of the posterior
distribution, i.e., the posterior mean and the pos-
terior covariance matrix, are inferred from the up-
dated ensemble. Additional research results on data
assimilation in the reduced data space can be found
in Evensen (2007) and Chen and Oliver (2017).
In the next section, we consider a simple 1D

inverse problem with the goal of predicting elastic
properties from the measured seismic trace and we
analyze the uncertainty of the solution with and
without data and/or model reduction, for the linear
and nonlinear cases.

APPLICATION

We first focus on a simple linear inverse prob-
lem for the prediction of acoustic impedance from
a zero-offset seismic trace. The model m is a vec-
tor of nm samples of logarithm of acoustic imped-
ance, and the data d is a vector of nd ¼ nm − 1

samples of seismic amplitudes. The forward oper-
ator g is a convolution of a wavelet w and the lin-
ear reflection coefficient expression for an incident
angle of 0°:

dðtÞ ¼ wðtÞ × rðtÞ þ eðtÞ ¼
Z

wðuÞrðt − uÞduþ eðtÞ

¼ 1

2

Z
wðuÞ dmðt − uÞ

dt
duþ eðtÞ: (25)

In the discrete case, the forward operator can be expressed as a
matrix G ¼ 1∕2WD of size nd × nm, where W is the convolution
matrix andD is the first-order differential matrix (Buland and Omre,
2003). The forward operator is then linear in the model variable, i.e.,
the logarithm of acoustic impedance.
We introduce here a synthetic example (Figure 1) to illustrate the

inversion method. The model vector m includes nm ¼ 70 samples
of logarithm of acoustic impedance, and the data vector d includes
nd ¼ 69 samples of seismic amplitudes (Figure 1). The wavelet in
the forward model is a Ricker function with dominant frequency of
30 Hz, and we apply a signal-to-noise ratio of 10. We assume that
the modelm is prior distributed according to a Gaussian distribution
Nðm;μm;ΣmÞ, where the prior mean μm is a nm × 1 vector and the
prior covariance Σm is a nm × nm matrix. The prior model is shown
in Figure 1. The prior mean is constant and equal to 9.25 in the log
domain (corresponding to an actual value of 10,400 m∕sg∕cm3),
and the prior covariance matrix is the prior variance (spatially
invariant and equal to 0.0023) multiplied by a symmetric spatial
correlation matrix obtained from an exponential correlation func-
tion with a range equal to 25 samples. In real applications, the prior
mean is a vector including a low-frequency (background) model
and the covariance matrix includes a spatial correlation model ob-
tained from the empirical spatial correlation function.

Figure 3. Bayesian linear seismic inversion for the logarithm of P-impedance with and
without model reduction. Plots (a and b) show the comparison between BLI and BLI
with 90% variance model reduction; plots (c and d) show the comparison between BLI
and BLI with 75% variance model reduction. The blue lines represent the posterior dis-
tribution and the predicted data from BLI, the red lines represent the BLI with reduced
model, and the solid black lines represent the reference model and data. The dashed lines
represent the 95% confidence interval.
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We apply the Bayesian linear inversion (BLI) (Buland and Omre,
2003). The results are the point-wise posterior distributions of the
logarithm of acoustic impedance conditioned by the seismic data.
The results are shown in Figure 2. The posterior mean matches the
reference model. The posterior variance is constant (equation 6 does
not depend on the data) except for at the top and the bottom of the
interval due to border effects.

Dimension reduction for linear inverse problems

We first compare the results of BLI with the results of BLI with
reduced data. We study two scenarios in which we reduce the data to
preserve 90% and 75% of the total variability of the data, respectively.
The results of BLI with 90% variance data reduction (i.e., preserving
90% of the data variability, obtained using 22 principal components)
show good agreement with BLI. The uncertainty (i.e., the posterior
variance) is slightly larger, and the predicted data are slightly
smoother; however, the data reduction does not affect the inversion
results largely. The quality of the inversion results decreases for the
BLI with 75% variance data reduction (i.e., preserving 75% of the data
variability, obtained using 16 principal components). The uncertainty
in the solution is larger, and the mismatch between predicted model
and reference model as well as between predicted data and measured
data is worse than the 90% variance data reduction case. The resulting
predicted model and data are smoother than the actual model due to
the loss of information (i.e., high frequencies) in the reduced data.

We then compare the results of BLI with the results of BLI with
reduced model (90% and 75% of the total variance of the model,
corresponding to 30 and 13 principal components, respectively).
The inversion results of BLI with 90% variance model reduction
show a good agreement with BLI (Figure 3); however, we notice
that the uncertainty (i.e., the posterior variance) is smaller than
BLI. The uncertainty reduction is more pronounced for the BLI with
75% variance model reduction. Similar to the data reduction case,
the mismatch between the predicted model and the reference model
as well as between predicted data and measured data is worse for
75% variance model reduction than 90% variance model reduction.
We compute the posterior distribution of the inverse problem with

data and model reduction for all the percentages of total variance
from 0% to 100%, in which the reduction with 100% of the total
variance corresponds to the full inverse problem. Figure 4 shows
the posterior variance as a function of the fraction of total variability
of reduced data versus full data (Figure 4a) and the posterior variance
as a function of the fraction of total variability of reduced model ver-
sus full model (Figure 4b). Figure 5 shows the same results as a func-
tion of the number of principal components used to reduce the data
(Figure 5a) and model (Figure 5b). The reference variance is the pos-
terior variance of the BLI, analytically computed using equation 6
and equal to 10−3. In the data reduction case, the posterior variance
always overestimates the BLI posterior variance. The uncertainty
overestimation increases as the fraction of the total variability de-
creases (i.e., with fewer principal components). In the model reduc-
tion case, the posterior variance always underestimates the BLI

Figure 4. Uncertainty analysis: variances of the posterior distribu-
tion as a function of the fraction of total variability of the reduced
data versus the full data (a) and the reduced model versus the full
model (b). The black line represents the posterior variance of BLI
(σ2 ¼ 10−3), the green line represents the posterior variance of BLI
with data reduction, and the red line represents the posterior vari-
ance of BLI with model reduction.

Figure 5. Uncertainty analysis: variances of the posterior distribution
as a function of the number of principal components preserved in the
reduced data (a) and the reduced model (b). The black line represents
the posterior variance of BLI (σ2 ¼ 10−3), the green line represents
the posterior variance of BLI with data reduction, and the red line
represents the posterior variance of BLI with model reduction.
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posterior variance. The uncertainty underestimation increases as the
fraction of the total variability decreases. The posterior variances of
the BLI with data and model reduction converge to the BLI posterior
variance when the number of principal components is approximately
40 for data reduction and approximately 68 for model reduction.
These results can be explained using equations 14 and 22. In the data
reduction case, the posterior variance of the model conditioned by the
reduced data (equation 14) is always greater than or equal to the pos-
terior variance conditioned by the full data set. Indeed, it can be nu-
merically shown that

ðΣmð ~V−1
d GÞTð ~V−1

d GΣmð ~V−1
d GÞTþ ~VdΣd

~VT
dÞ−1 ~V−1

d GΣmÞi;i
≤ðΣmGTðGΣmGTþΣdÞ−1GΣmÞi;i (26)

for i ¼ 1; : : : n. Similarly, in the model reduction
case, the posterior variance of the model condi-
tioned by the data and reduced model (equa-
tion 22) is always less than or equal to the
posterior variance of the full model because it
can be numerically shown that

ð ~VmðΣ ~m − Σ ~mðG ~VmÞTðG ~VmΣ ~mðG ~VmÞT
þ ΣdÞ−1G ~VmΣ ~mÞ ~VT

mÞi;i
≤ ðΣmjdÞi;i (27)

for i = 1, : : : n.
In Figure 6, we compare the results of BLI with

the results of ES-MDA. The two methods provide
similar results in terms of model predictions. The
root-mean-square error for BLI is 0.1539, whereas
the root-mean-square error for ES-MDA ranges
from 0.10 to 0.20 (depending on the initial real-
izations). However, the ES-MDA underestimates
the variance of the posterior distribution (σ2 ¼
0.0003 for an ensemble of 1000 model) compared
to BLI ðσ2 ¼ 0.0010Þ, despite a large number
of models in the ensemble. This effect could be
mitigated by applying a covariance localization
(Evensen, 2007).
The uncertainty quantification results are sum-

marized in Table 1 for all the inversion cases pre-
sented above. The variances of the data reduction
cases are higher than the BLI variance, whereas the variances of the
model reduction cases are smaller than the BLI variance. The 95%
coverage ratio (i.e., the percentage of samples of the true model
falling in the 95% confidence interval) also shows the overestima-
tion of the uncertainty in the data reduction case and the underes-
timation in the model reduction case. If the uncertainty is correctly
assessed, the 95% coverage ratio should be 0.95. The 95% coverage
ratio for BLI is equal to 0.98, possibly due to the limited number of
samples in the model vector. The 95% coverage ratios for the data
reduction cases are equal to 1, meaning that the uncertainty is over-
estimated; the 95% coverage ratios for the model reduction cases
are less than or equal to 0.95, meaning that the uncertainty is under-
estimated. The Table 1 also includes the inversion results obtained
using the ES-MDA using 100, 1000, and 10,000 models and shows
the underestimation of the variance for all of these cases.

Dimension reduction for nonlinear inverse problems

We then focus on a nonlinear problem for the prediction of elastic
properties from three partial angles stacks of seismic data. The model
m is a vector of 3nm samples of P-wave velocity, S-wave velocity,
and density, and the data d is a vector of 3nd ¼ 3nm − 3 samples of
near-, mid-, and far-angle seismic data. The forward operator g is a
convolution of the wavelets and the Zoeppritz equation for the reflec-
tion coefficients of the near, mid, and far angles.
The synthetic example for the nonlinear case is shown in Figure 7.

We assume that the model m is prior distributed according to a tri-
variate Gaussian distribution Nðm;μm;ΣmÞ, where the prior mean

Figure 6. Comparison between BLI and ES-MDA for seismic linearized inversion:
(a) posterior distribution of the logarithm of P-impedance from BLI (in blue), (b) prior
distribution of the logarithm of P-impedance for ES-MDA (in blue) (gray lines represent
the prior realizations), (c) posterior distribution of the logarithm of P-impedance from
ES-MDA (in blue) (gray lines represent the posterior realizations), and (d) predicted
seismic amplitudes are indicated in blue. The black line represents the reference model
and data. The dashed lines represent the 95% confidence interval.

Table 1. Uncertainty quantification for the linear inverse
problem using BLI (variances and 95% coverage ratios).

Variance
(Ln IPÞ

95% Coverage
ratio (Ln IPÞ

BLI 0.0010 0.98

BLI — data reduction 90% 0.0016 1.00

BLI — data reduction 75% 0.0018 1.00

BLI — model reduction 90% 0.0008 0.95

BLI — model reduction 75% 0.0006 0.94

ES-MDA (100 models) 0.0002 0.85

ES-MDA (1000 models) 0.0003 0.97

ES-MDA (10,000 models) 0.0003 0.97
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μm is a 3nm × 1 vector and the prior covariance
Σm is a 3nm × 3nm matrix, obtained as the Kro-
necker product of the spatially independent
covariance matrix (estimated from the reference
model) and a spatial correlation matrix (com-
puted from an exponential correlation function
with range equal to 25 samples). The prior model
is shown in Figure 7. A set of Ne ¼ 1000 geo-
statistical realizations is computed and used as
the ensemble of prior models (Figure 7). We
adopt the ES-MDA method to update the ensem-
ble of models and compute the approximate pos-
terior distribution from the posterior ensemble. A
sensitivity analysis on the number of models in
the ensemble was performed; at least 1000 mod-
els are required to obtain stable statistics of the
posterior distribution; with less than 100 models
the ensemble collapses after the first iteration.
The inversion results for the problem with the
full data and model are shown in Figure 8. The
posterior mean matches the reference model; how-
ever, the posterior variance shows that the uncer-
tainty is fairly small, as expected for stochastic
inverse methods. We then apply the same inverse
method with a reduced data vector obtained by
applying PCA. Figure 9 shows the results of the
inversion with a reduced vector of 3n ~d ¼ 66, pre-
serving 90% of the total variance of the data.
Figure 10 shows the results of the inversion with
a reduced vector of 3n ~d ¼ 27, preserving 75% of
the total variance of the data. The posterior vari-
ance increases as the fraction of the total variabil-
ity decreases. The mismatch between predicted
model and reference model and between predicted
data and measured data is larger for the 75% vari-
ance data reduction case than for the 90% variance
data reduction case. Overall, the variances are
larger for the data reduction cases than the full
data case. It seems that the data reduction compen-
sates the uncertainty reduction generally obtained
using ES-MDA method with a limited number of
models; however, the accuracy of the posterior
mean and the data prediction decreases with the
greater data reduction.

DISCUSSION

The linear inverse problem allows assessing the
changes in uncertainty quantification when data or
model reduction is applied. The inverse problem is
solved in a Bayesian setting under Gaussian as-
sumptions, in which the mean and the variance
of the posterior distribution can be analytically as-
sessed. The variance of the posterior distribution
of the model is compared to the posterior variance
of the solution of the full problem. The posterior
variance of the reduced data problem overesti-
mates the posterior variance of the full data prob-
lem, and it increases when the fraction of the
variance of reduced data versus the full data

Figure 7. Synthetic example of nonlinear seismic inversion. From left to right: (a) P-
wave velocity, (b) S-wave velocity, (c) density, and (d) seismic data (near, mid, and far
angle). The black lines represent the reference model, the blue lines represent the prior
distributions of the model variables (the solid line represents the mean, and the dashed
lines represent the 95% confidence interval), and the gray lines represent 1000 prior
realizations and the corresponding predicted data.

Figure 8. Nonlinear inversion results obtained from the ES-MDA. From left to right:
(a) P-wave velocity, (b) S-wave velocity, (c) density, and (d) seismic data (near, mid, and
far angle). The black lines represent the reference model, the blue lines represent the
posterior distributions of the model variables (the solid line represents the mean, and the
dashed lines represent the 95% confidence interval), and the gray lines represent 1000
posterior realizations and the corresponding predicted data (the predicted data overlap
with the measured data).
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decreases. The posterior variance of the reduced
model problem underestimates the posterior vari-
ance of the full model problem, and it decreases
when the fraction of the variance of reduced
data versus the full data decreases, according to
the analytical formulation and the numerical evi-
dence. Indeed, reducing the data makes the in-
verse problem underdetermined (more model
variables than measured data), whereas reducing
the model makes the inverse problem overdeter-
mined (more measured data than model var-
iables).
Other linear dimension reduction methods can

also be applied. Data could be reduced by subsam-
pling the data vector, for example, by sampling the
seismic data every other crossline or inline. Non-
linear reduction methods, such as MDS of the data
vector or wavelet transform of the model vector,
could also be applied, but analytical solutions
are not available.
Analytical solutions for the posterior distribu-

tion for nonlinear problems are generally not avail-
able. In this work, we proposed the ES-MDA, but
any other stochastic inverse method (Markov
chain Monte Carlo or stochastic optimization al-
gorithms) could be used. Similar conclusions to
the linear case can be drawn for the nonlinear case.
However, it is important to point out that the ac-
curacy and precision of the solution of ES-MDA
depend on the number of models in the initial en-
semble. A limited number of models in the ensem-
ble leads to an underestimation of the uncertainty.
The presented methodology can be extended to
2D and 3D problems using a trace-by-trace ap-
proach. Advanced dimension reduction methods
based on machine learning algorithms, such as
the convolutional autoencoder, can also be applied
to capture the spatial features of the data and/or
model distribution (Liu and Grana, 2018).

CONCLUSION

We formalized the use of linear reduction of
data and model in the Bayesian linear workflow
and compared the results with traditional BLI.
The assessment of the uncertainty for Gaussian-
linear inverse problem can be performed analyti-
cally using closed forms of the parameters of the
posterior distribution of the model given the data.
The application to linearized acoustic and nonlin-
ear elastic inversion shows the impact of reduction
methods on the posterior uncertainty of the pre-
dicted models. We proved with the analytical
formulation and the numerical experiments that
data reduction leads to the overestimation of the
uncertainty and model reduction leads to the
underestimation of the uncertainty. We also ex-
tended the approach to nonlinear inverse problems
by using an ensemble-basedmethod. Further stud-
ies should be conducted for nonlinear reduction

Figure 9. Nonlinear inversion results obtained from the ES-MDA with 90% variance
data reduction. From left to right: (a) P-wave velocity, (b) S-wave velocity, (c) density,
and (d) seismic data (near, mid, and far angle). The black lines represent the reference
model, the blue lines represent the posterior distributions of the model variables (the
solid line represents the mean, and the dashed lines represent the 95% confidence in-
terval), and the gray lines represent 1000 posterior realizations and the corresponding
predicted data (the predicted data overlap with the measured data).

Figure 10. Nonlinear inversion results obtained from the ES-MDA with 75% variance
data reduction. From left to right: (a) P-wave velocity, (b) S-wave velocity, (c) density,
and (d) seismic data (near, mid, and far angle). The black lines represent the reference
model, the blue lines represent the posterior distributions of the model variables (the
solid line represents the mean, and the dashed lines represent the 95% confidence in-
terval), and the gray lines represent 1000 posterior realizations and the corresponding
predicted data (the predicted data overlap with the measured data).
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methods, but an assessment of the posterior uncertainty is strongly
recommended for any geophysical inverse problem with a nonunique
solution.

DATA AND MATERIALS AVAILABILITY

Data associated with this research are available and can be
obtained by contacting the corresponding author.
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