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Abstract The fast Fourier transform-moving average (FFT-MA) is an efficient
method for the generation of geostatistical simulations. The method relies on the
calculation of a filter operator based on the covariance function of interest and the
convolution of the filter with a white noise, to generate multiple realizations of spa-
tially correlated variables. In this work, a revisited mathematical formulation of the
FFT-MA method, with the exact expression of the filter, is presented. The proposed
derivation of the filter is based on the Wiener–Khinchin theorem and the application
of the Fourier transform in a discrete domain. In the specific case of white noise,
the proposed formulation leads to the same expression of the traditional algorithm.
However, the method can be applied to other types of noise. The proposed technique
allows the calculation of a specific filter that imposes an exact covariance function
on the noise. Therefore, the experimental covariance function is exactly equal to the
theoretical one, which is not the case for many common simulation techniques due to
the limited sample size. Applications of the FFT-MAmethod to synthetic and real data
sets, including exact interpolation, hard data conditioning and correlated simulations
from cross-correlated noises, are also presented.
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1 Introduction

Geostatistical simulations are widely used to generate multiple realizations of random
fields to represent the distribution of rock and fluid properties and their spatial vari-
ability associated to geological stratigraphy and deposition (Armstrong et al. 2003;
Gómez-Hernández 2005; Ersoy and Yünsel 2006; Doyen 2007; de Figueiredo et al.
2018). Several techniques can be adopted to simulate stochastic realizations of sub-
surface models. The most popular algorithm is the sequential Gaussian simulation
method (Deutsch and Journel 1992; Journel andGomez-Hernandez 1993), a geostatis-
tical approach inwhich the values of themodel property are sequentially sampled from
a Gaussian distribution with mean and variance equal to the kriging mean and vari-
ance computed from the previously simulated values. Several algorithms based on the
sequential approach have been presented, including the sequential Gaussian mixture
simulation (Grana et al. 2012), the Direct Sequential Simulation (Soares 2001; Tran
et al. 2001), and the sequential indicator simulation (Journel and Gomez-Hernandez
1993; Doyen et al. 1994).

In addition to sequential methods, other algorithms have been developed, including
the fast Fourier transform-moving average (FFT-MA) (Oliver 1995; Le Ravalec et al.
2000; Doyen 2007), the turning band method (Journel and Huijbregts 1978; Brooker
1985; Hunger et al. 2014), and the Cholesky and lower-upper (LU) decomposition
of the covariance matrix methods (Alabert 1987; Davis 1987). In particular, the FFT-
MA is a very efficient algorithm for simulating geostatistical realizations in relatively
large grids. In general, the FFT-MA is faster than sequential methods. The algorithm
is based on the convolution between a filter operator and a white noise; therefore,
its implementation is particularly efficient when the convolution is computed in the
frequency domain. In order to simulate random fields conditioned by hard data, the
FFT-MA can be combined with the probability field simulation (PFS) method (Srivas-
tava 1992). However, this algorithm has two main limitations related to the inaccurate
reproduction of local extrema and covariance functions (Pyrcz and Deutsch 2001;
Doyen 2007). Despite these limitations, the methodology is widely applied to gener-
ate realizations in large grids thanks to its simplicity and efficiency (Le Ravalec-Dupin
et al. 2008; Yang and Zhu 2017; de Figueiredo et al. 2018). A more adequate and for-
mally correct approach is the method proposed by Marcotte and Allard (2018), based
on post-conditioning by kriging. Indeed, conditional realizations of a Gaussian ran-
dom field can be obtained in two steps, by generating unconditional realizations and
then using kriging to condition the realizations by hard data.

In this work, a revisited derivation of the FFT-MA filter operator is presented.
When the noise is white, the same expression of the traditional formulation based on
the filter operator is obtained. However, in the proposed formulation, the filter can
be applied to other types of noise. In the case of colored noise, the computational
cost for the calculation of the filter operator is larger than in case of white noise. The
advantage of the proposed formulation is that it allows the calculation of a specific filter
that imposes an exact covariance function on the noise. Therefore, the experimental
covariance function is exactly equal to the theoretical one. In traditional simulation
techniques, experimental and theoretical covariance functions are not necessarily the
same due to the limited size of the simulation grid.
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Applications of themethod to simulations conditioned by hard data and simulations
of correlated variables are presented using the traditional FFT-MA. In particular, real-
izations conditioned by hard data are obtained by solving a linear system of equations
for the components of the white noise at the locations of the measured data. A mathe-
matical exact interpolator is also obtained by calculating the mean of the conditional
realizations. The generation of correlated simulations is obtained by applying the filter
operator to correlated white noises.

Section 2 reviews the previous formulations of the FFT-MA method presented
in literature, describes the mathematical details of the revised formulation for one
variable, and presents the formulation of the methodology for hard data conditioning
and correlated simulations. Section 3 shows the results of the application to synthetic
and real data sets.

2 Methodology

2.1 Literature Review

The FFT-MA method for geostatistical simulations was first introduced by Oliver
(1995). The filter operator is obtained by defining the spatially correlated random
field y(x) as the convolution of the operator filter f (x) and the white noise z(x)

y(x) = f (x) ∗ z(x) =
∫
U

f (x − x′)z(x′)dx′. (1)

By definition, the covariance function of y(x) is

c(Δx) = E {y(x)y(x + Δx)}
= E

{∫
U

f (x − x′)z(x′)dx′
∫
U

f (x + Δx − x′′)z(x′′)dx′′
}

. (2)

Assuming that the mean operator can be applied to several samples of y(x), the covari-
ance function becomes

c(Δx) =
∫
U

∫
U

f (x − x′) f (x + Δx − x′′)E
{
z(x′)z(x′′)

}
dx′dx′′. (3)

If the noise z(x) is white, then

E
{
z(x′)z(x′′)

} = σ 2
z δ(x′ − x′′), (4)

where σ 2
z is the noise variance. Then, the covariance function can be written as

c(Δx) = σ 2
z

∫
U

f (x − x′) f (x + Δx − x′)dx′. (5)
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Because the convolution is commutative with respect to translations and the filter
operator is real and even, the relation between the filter and the covariance function is
obtained as

c(Δx) = σ 2
z f (x) ∗ f (x). (6)

In the frequency domain, the convolution is the product of the functions; therefore,
Eq. (6) is

C(w) = σ 2
z |F(w)|2. (7)

A different formulation proposed by Le Ravalec et al. (2000) is based on the
Wiener–Khinchin theorem (Wiener 1966). In this formulation, the expectation of the
autocovariance function C(w) of the sample Y (w), in the frequency domain, is

C(w) = E
{
Y (w)Y ∗(w)

}
. (8)

Bacause y(t) is defined as a convolution in the frequency domain, the Fourier transform
Y (w) of y(t) can be expressed as Y (w) = F(w)Z(w). Hence

C(w) = E
{
F(w)Z(w)F∗(w)Z∗(w)

}
. (9)

By assuming that the expectation is calculated over several realizations, C(w) can be
rewritten as

C(w) = F(w)F∗(w)E
{
Z(w)Z∗(w)

}
. (10)

Because z(t) is a stationary random field associated with a Dirac covariance function
(i.e., white noise), then C(w) can be obtained as

C(w) = F(w)F∗(w)σ 2
z , (11)

where σ 2
z is the total variance of z(t). Finally, because the filter is even, C(w) can be

then written as

C(w) = σ 2
z |F(w)|2. (12)

2.2 Revisited Formulation

By applying the Wiener–Khinchin theorem in the discrete form (Wiener 1966), the
autocovariance function Cw of yt can be written in the frequency domain as

Cw = 1

N
Yw Y ∗

w, (13)
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where Yw is the convolution of the filter ft and the noise zt

Yw = FwZw, (14)

where Fw and Zw are the discrete Fourier transforms of ft and zt , respectively. By
using the definition of discrete Fourier transform, Yw can be rewritten as

Yw = Fw

∑
t

zt e
−iwt . (15)

Then, by replacing the discrete Fourier transform of Yw in Eq. (13) and by using the
even property of the filter (FwF∗

w = |Fw|2), Cw is obtained as

Cw = |Fw|2
N

∑
t

∑
t ′

zt zt ′e
iw(t ′−t). (16)

The expression of Cw can be split into two terms

Cw = |Fw|2
N

⎡
⎣∑

t

z2t + 2
N∑
t=0

N∑
t ′=t+1

zt zt ′e
iw(t ′−t)

⎤
⎦ , (17)

where the first term is associated to the product of the components with the same
indexes, and the second term is associated to different components.

By introducing the variableΔt , defined asΔt = t ′−t , and replacing this expression
in Eq. (17), Cw can be written as

Cw = |Fw|2
N

[∑
t

z2t + 2
N∑
t=0

N−t∑
Δt=1

zt zΔt+t e
iwΔt

]
, (18)

or

Cw = |Fw|2
[
1

N

∑
t

z2t + 2
N−t∑
Δt=1

eiwΔt

(
1

N

N∑
t=0

zt zΔt+t

)]
. (19)

In Eq. (19), the term highlighted in parenthesis is the definition of the autocovariance
function of the random noise zt . In the particular case where zt is white noise, the term
in parenthesis is zero for any Δt > 0. Furthermore, the first summation in Eq. (19) is
the noise variance; therefore, Eq. (19) becomes

Cw = σ 2
z |Fw|2. (20)
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From Eq. (19), the expression of the filter weights Fw can be derived as

Fw =

√√√√√Cw

[
1

N

∑
t

z2t + 2
N−t∑
Δt=1

eiwΔt

(
1

N

N∑
t=0

zt zΔt+t

)]−1

. (21)

The complexity of the computation is of order O(N 3) compared to the traditional FFT-
MA of order O(N ln(N )), for the specific case of white noise (Eq. 20). However, Eq.
(21) can be applied to any type of noise. Furthermore, even in the white noise case, it is
unlikely to obtain perfect white noise using standard random sampling techniques for
generating realizations of random fields in a grid with limited size (e.g., smaller than
104 elements). If Eq. (21) is calculated for a specific noise, the convolution with the
exact filter leads to a correlated random field with an experimental covariance function
(Eq. 13) exactly equal to the theoretical one. The exact reproduction of the covariance
function is guaranteed in the frequency domain but not in the original spatial domain.
This is not the case for traditional methods when applied to simulations of random
fields in small grids. In some applications, reproducing the exact theoretical covariance
function might be a limitation, because it might be desirable to obtain realizations
whose experimental covariance accounts for variations around the theoretical model,
for example, for large lags of the spatial covariance function. Both the traditional FFT-
MA and the exact formulation might introduce a periodic behavior in the realizations
due to the use of the Fourier transform, as documented in Le Ravalec et al. (2000).

The traditional definition of the filter (Eq. 20) leads to a different interpretation of
the usual moving average operators. In fact, by applying the discrete inverse Fourier
transform to Cw at t = 0, the realization variance σ 2

y can be obtained as

ct=0 = σ 2
z

N

∑
w

|Fw|2 = σ 2
y . (22)

Based on Parseval’s theorem in the discrete domain (Arfken et al. 2011), the sum on
the right-hand side of Eq. (22) can be expressed as

∑
t

| ft |2 = 1

N

∑
w

|Fw|2. (23)

By applying this expression to Eq. (22), the following equivalence is obtained

∑
t

| ft |2 = σ 2
y

σ 2
z

. (24)

Therefore, the so-obtained filter operator differs from the traditional moving average
operator, in which the summation over all its components is equal to one. It is also
possible to find a filter where the summation over its components is zero.
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2.3 Correlated Simulations

Assuming two white noises z1 and z2 with variance σ 2
z and correlation ρz1,z2 , it is

possible to generate two spatially correlated realizations y1 and y2 by applying a filter
operator. In this case, the cross-covariance function of the realizations in the frequency
domain is

Cy1,y2
w = Y 1

w Y 2∗
w

N
= Fw F∗

w Z1
w Z2∗

w

N
, (25)

or

Cy1,y2
w = |Fw|2 Cz1,z2

w , (26)

where Cz1,z2
w = σ 2

z ρz1,z2 .
The cross-covariance at lag zero can be calculated by applying the discrete inverse

Fourier transform for t = 0

cy1,y2t=0 = 1

N

∑
w

|Fw|2 σ 2
z ρz1,z2 . (27)

where, by definition, cy1,y2t=0 is equal to the total covariance σ 2
y ρ y1,y2 between the real-

izations y1 and y2. By applying Parseval’s theorem in the discrete domain to Eq. (27),
the following expression is obtained

σ 2
y ρ y1,y2 = σ 2

z ρz1,z2
∑
t

| ft |2. (28)

By combining Eq. (28) with Eq. (24), it is straightforward to obtain

ρ y1,y2 = ρz1,z2 . (29)

This result shows that the correlation between white noises is preserved after the
filtering process. As a consequence, it is possible to generate multiple correlated sim-
ulations by applying the same filter to multiple correlated white noises. In practical
applications, the white noises can be generated using a point-wise bivariate sampling
approach. Other techniques for the simulation of correlated realizations using the FFT-
MA method can be found in Le Ravalec-Dupin and Da Veiga (2011) and Liang et al.
(2016). For multivariate problems, another application is the simulation of corregion-
alizations with variables with different structures, using different filters applied to
correlated noises (Bourgault and Marcotte 1991, 1993).

It is also possible to apply score transformations to Gaussian distributions to obtain
non-Gaussian simulations; however, because the transformation is nonlinear, the final
covariance function of the realization may not be preserved (Wackernagel 2003).
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2.4 Hard Data Conditioning

In several applications, the probability field simulation (PFS) method is used to condi-
tion the FFT-MA simulations to available measured data. However, this algorithm can
lead to undesired artifacts, including inaccurate predictions of local extrema and of the
covariance function (Pyrcz and Deutsch 2001; Doyen 2007). Alternatively, uncondi-
tional realizations of a Gaussian random field could be generated and post-conditioned
by kriging as in Marcotte and Allard (2018).

In this work, a new approach is presented, based on a technique originally pro-
posed by Alabert (1987) and Davis (1987) to produce conditional simulations via LU
decomposition of the covariance matrix. The approach is applied in a time domain, in
which the noise components are locally perturbed to ensure that the realizations honor
the data after applying the convolution operator.

The convolution of the filter and the noise, in a time domain, can be written in the
matrix form

y = Tz, (30)

whereT is the convolutionmatrix generated by the discrete filter f , and z is the discrete
white noise. In practical applications, the discrete filter f is obtained by applying the
inverse fast Fourier transform (IFFT) of the filter in the frequency domain (Eqs. 12
and 20).

To honor the measured data, the specific field components of the realizations ymust
be equal to the data d, at the data locations. The rows of the product in Eq. (30) can
be rearranged such that the first row corresponds to the hard data locations

(
yd
yn

)
=

(
Td To

T1 T2

)(
zd
zo

)
=

(
d
yn

)
. (31)

The solution of the system at the data locations can then be obtained as

zd = T−1
d (d − Tozo) . (32)

By applying the convolution operator (Eq. 30), the realization z is conditioned by the
measured data d.

The computational cost of conditional simulations is larger than the cost of uncondi-
tional simulations. Indeed, the formulation of the algorithm for hard data conditioning
is expressed in the time domain, rather than the frequency domain, and it requires
the calculation of the convolution matrix. Such matrix can be very large for three-
dimensional problems. The computational cost and the memory requirements are
larger than the approach proposed in Marcotte and Allard (2018), based on FFT-MA
unconditional simulations and post-conditioning by kriging.

To prove that the proposed formulation leads to an exact estimator, it is possible to
compute the mean of several realizations y

E{y} = TE{z}, (33)
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Fig. 1 Example of application to a Gaussian covariance function model. Top: simulation results with
traditional filter (black) and exact filter (blue). Bottom left: comparison of the filters, traditional formulation
(black) and exact filter of the proposed formulation (blue). Bottom right: experimental covariance function
obtained with traditional filter (black) and exact filter (blue)

which can be rearranged as in Eq. (31)

E{y} = T
(
E{zd}
E{zo}

)
. (34)

The mean of the noise components zd at the data locations can be calculated using
Eq. (32)

E{zd} = T−1
d (d − ToE{zo}) = T−1

d d. (35)

Because the noise is assumed to be white, the mean of the noise components at other
locations is 0. Then, the exact estimator is given by

E{y} = T
(
T−1
d d
0

)
. (36)

The exact conditioning property is valid for each realization.
One of the limitations of the proposedmethod is related to thememory requirements

that make FFT-MA not applicable to very large grids with large correlation ranges.
For large three-dimensional applications, other simulationmethods such as the turning
band method (Journel and Huijbregts 1978; Brooker 1985; Hunger et al. 2014) are
more suitable.
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Fig. 2 Example of application of conditional FFT-MA. Top: Conditional sampling given a set of hard data;
the reference model is shown in black, the conditional realizations in blue, and the exact interpolation in
red. Bottom: comparison of several realizations obtained from the proposed conditional FFT-MA (blue)
and from conditional LU decomposition (magenta)

Fig. 3 Elevation data in meters of a part of Yellowstone Park. Top: Elevation histogram; bottom: experi-
mental covariance function of the elevation (red points) fitted by a spherical theoretical model with a range
of 12km and sill of 8943 m2 (blue curve)
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Fig. 4 Elevation data inmeters of a part of Yellowstone Park. Top: referencemodel (black crosses represent
hard data locations. Middle: conditional simulated model. Bottom: interpolated model

3 Applications

3.1 Univariate Examples

To validate the revisited formulation, a one-dimensional Gaussian covariance function
model is adopted. In the first example, a convolutional operator is applied to a white
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Fig. 5 Correlated simulation. Top andmiddle plots: two realizationswith a correlation of 0.75 andGaussian
covariance model. Bottom plot: cross-plot of the simulated values with an experimental correlation of
0.756208

noise using the traditional FFT-MA filter (Eq. 7) and the proposed exact filter (Eq. 19),
respectively. Figure 1 shows the filters and the corresponding realizations generated by
each filter. The realizations show similar results; however, the experimental covariance
function (Fig. 1) obtained with the exact filter is exactly equal to the theoretical model,
whereas the experimental covariance obtained with the traditional formulation differs
from the theoretical one due to the limited number of samples. The experimental
covariance functions are calculated using Eq. (13) for the entire simulated field.
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Fig. 6 Non-Gaussian simulation. Top and middle plots: realizations of variables X1 and X2 following the
target beta distribution with the Gaussian covariance model. Bottom plot: cross-plot of the simulated values
with experimental correlation 0.743089

Hard data conditioning and exact interpolation are demonstrated through a one-
dimensional application, in which a random realization is generated using a theoretical
covariance function and is used as a referencemodel to extract hard data. Figure 2 (top)
shows the one-dimensional reference model with several realizations conditioned by
the hard data. The realizations are obtained using Eqs. (30) and (32). The exact interpo-
lation is computed using Eq. (36). Figure 2 (bottom) compares multiple realizations
obtained with the proposed FFT-MA for conditional simulations with realizations
obtained with the LU decomposition approach, showing similar results.
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Fig. 7 Non-Gaussian simulation: histogram of the non-Gaussian realizations. The target beta distribution
is shown in orange

3.2 Multivariate Examples

The proposed methodology has been tested in a real two-dimensional application rep-
resenting the elevation (in meters) of a region of Yellowstone Park. The selected area
of the park is located approximately between Old Faithful and the west side of Yel-
lowstone Lake, and corresponds to a latitude of approximately 44◦ and a longitude of
approximately− 110◦. The histogram of the data is shown in Fig. 3. The experimental
covariance function is calculated assuming transverse isotropy, and it can be fitted by
a theoretical spherical model with a range of 12 km and sill of 8943 m2.

The conditioning hard data is generated by randomly sampling 150 data points of
the reference elevation data, shown by the black points in Fig. 4 (top). The results
of the simulation are shown in Fig. 4 (middle) and (bottom), where a conditional
realization and the exact interpolation (Eq. 36) are compared to the reference model.
Both simulation and interpolation are conditioned by the hard data.

To illustrate the method for the simulation of multiple correlated properties, a
two-dimensional synthetic example is introduced (Fig. 5). Two spatially correlated
Gaussian realizations (X1 and X2) are obtained by applying the filter operator to two
white noises with a correlation of 0.75. The cross-plot of the simulated values of the
correlated realizations X1 and X2 shows that the correlation is approximately the same
(0.756208).
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Similarly, the application of the methodology to non-Gaussian distributions is
illustrated using the same two-dimensional synthetic example. The target distribu-
tion corresponds to a beta probability density function with parameters A = 1.8 and
B = 5, for the random realizations X1 and X2 introduced in the previous example. The
non-Gaussian realizations are shown in Fig. 6. The cross-plot of the simulated values
shows that in this example, the correlation between the variables is approximately
preserved and equal to 0.743089, after the transformation. In general, the correlation
depends on the type of transformation. For strongly nonlinear transformations of the
Gaussian variables, the correlation might not be exactly preserved. The histograms
of the simulated values are displayed in Fig. 7 and show that the transformations
are properly applied to the variables. Indeed, the experimental distributions match the
target beta probability density function.

4 Conclusions

In this work, a new formulation for the derivation of the operator filter of the FFT-
MAmethod has been presented and demonstrated through several applications. In the
case of white noise, the proposed formulation is equivalent to the traditional approach
available in literature. The revisited formulation can also be applied to other types
of noise and allows the computation of a specific filter associated to the noise. The
proposed formulation generates multiple realizations with an experimental covariance
function exactly equal to the theoretical covariancemodel. An approach for generating
conditional realizations given a set of hard data measurements has also been proposed.
In this approach, an exact interpolationmethod is obtainedby calculating themeanover
the conditional simulations. Additional applications of the method include examples
of correlated realizations of multiple variables and simulations using non-Gaussian
distributions. The proposed formulation andmethodology have been validated through
one-dimensional illustrative examples and two-dimensional applications to synthetic
and real data.
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