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ABSTRACT

Seismic reservoir characterization aims to provide a 3D
model of rock and fluid properties based on measured seis-
mic data. Petrophysical properties, such as porosity, mineral
volumes, and water saturation, are related to elastic proper-
ties, such as velocity and impedance, through a rock-physics
model. Elastic attributes can be obtained from seismic data
through seismic modeling. Estimation of the properties of
interest is an inverse problem; however, if the forward model
is nonlinear, computationally demanding inversion algo-
rithms should be adopted. We have developed a linearized
forward model, based on a convolutional model and a new
amplitude variation with offset approximation that com-
bined Gray’s linearization of the reflectivity coefficients
with Gassmann’s equation and Nur’s critical porosity
model. Physical relations between the saturated elastic
moduli and the matrix elastic moduli, fluid bulk modulus,
and porosity are almost linear, and the model linearization
can be obtained by computing the first-order Taylor series
approximation. The inversion method for the estimation
of the reservoir properties of interest is then developed in
the Bayesian framework. If we assume that the distributions
of the prior model and error term are Gaussian, then the
explicit analytical solution of the posterior distribution of
rock and fluid properties can be analytically derived. Our
method has first been validated on synthetic seismic data
and then applied to a 2D seismic section extracted from a
real data set acquired in the Norwegian Sea.

INTRODUCTION

The goal of seismic reservoir characterization is to provide an
accurate description of the subsurface properties in the target inter-
val. The process of transforming the measured geophysical data, for

example, seismic or electromagnetic data, into physical properties
of porous rocks is an inverse problem (Tarantola, 2005; Doyen,
2007; Sen and Stoffa, 2013). Generally, seismic inversion aims
to transform reflection seismic data into elastic properties, such
as impedance, seismic velocity, or elastic moduli (Aki and Richards,
1980; Oldenburg et al., 1983; Russell, 1988; Sen and Stoffa, 2013),
and the estimation of petrophysical attributes from measured data
consists of seismic inversion and rock-physics (or petrophysics) in-
version (Mukerji et al., 2001; Coléou et al., 2005; Doyen, 2007;
Gunning and Glinsky, 2007; Bosch et al., 2010; Grana and Della
Rossa, 2010; Rimstad and Omre, 2010; Kemper and Gunning,
2014; Connolly and Hughes, 2016; Jullum and Kolbjørnsen, 2016;
Grana et al., 2017).
The seismic forward model is the process of converting the sub-

surface geologic elastic properties into the corresponding seismic
response. These models can be simple equations, such as convolu-
tional models, or more complex methods, such as elastic wave
propagation. Convolutional models introduce some approxima-
tions in the data prediction, and the underlying assumptions, such
as plane reflectors and weak elastic contrasts, are valid only for a
limited subset of geologic scenarios; however, full-waveform
propagation provides a more accurate physical description of
the elastic response, but the corresponding inversion methods
are more computationally demanding due to the complexity of
the forward model (Sayers and Chopra, 2009). Rock-physics mod-
els aim to transform petrophysical properties, such as porosity,
mineral volumes, and water saturation, into a set of elastic vari-
ables (Avseth et al., 2005; Mavko et al., 2009; Dvorkin et al.,
2014). These models generally consist of a set of physical equa-
tions, such as empirical multivariate linear regressions (Han,
1986) or complex poroelastic relations (Mavko et al., 2009),
and relate elastic moduli or velocities to rock and fluid properties.
Generally, the choice of rock-physics model depends on the spe-
cific sedimentary environment.
In this work, we propose a new linearized forward model based

on the amplitude variation with offset (AVO) approximation and the
linearized rock-physics model. The linearization of the seismic
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forward model based on the convolution of the seismic wavelet and
the linearized approximation of Zoeppritz equations is commonly
used in seismic inversion (Aki and Richards, 1980; Russell, 1988;
Gray et al., 1999). The linearization of the rock-physics model is
less common in reservoir characterization. The relation between
elastic properties and rock properties, such as porosity and mineral
volumes, is generally close to being linear. However, the relation
between water saturation and saturated-rock elastic properties is
generally nonlinear, especially when the fluid mixture is homo-
geneous. Ball et al. (2014) show that the nonlinearity is caused
by the application of fluid-mixture laws and that the relations be-
tween the fluid bulk modulus and the saturated-rock bulk modulus
is linear in Gassmann’s equation. Gassmann’s equation requires a
model for the computation of the dry-rock bulk modulus. If we
combine Gassmann’s equation with Nur’s critical model, we obtain
a rock-physics model in which the saturated-rock bulk and shear
moduli are almost linear with respect to porosity, matrix bulk
and shear moduli, and fluid bulk modulus. When the physical
model is almost linear, we can replace the exact equation with a
linearized approximation computed by truncating the Taylor series
expansion to the first order (Grana, 2016). By combining Gray’s
AVO approximation (Gray et al., 1999) with the linearized rock-
physics model, we obtain a linearized seismic-petrophysical for-
ward model, namely, linearized petrophysical AVO approximation.
This work is presented for the rock-physics model combining Nur’s
and Gassmann’s equations, for which the linearized approximation
can be analytically computed; however, the methodology could be
extended to other rock-physics equations by computing the Taylor
series expansion using numerical expressions of the Jacobian of the
rock-physics model. Linearized approximations are generally valid
for rock-physics models that are almost linear, but they might fail
for nonlinear models, such as the soft sand model, as discussed by
Grana (2016).
Our linearized formulation of the forward model expresses the

angle-dependent reflection coefficients as a function of six varia-
bles: porosity, matrix bulk modulus, matrix shear modulus, matrix
density, fluid bulk modulus, and fluid density. This formulation can
be used in an inverse problem setting to estimate rock and fluid
properties from seismic data. If the number of angle stacks is small,
the inverse problem is underdetermined and the solution is not nec-
essarily unique; however, we point out that some of the model prop-
erties are strongly correlated (for example, the bulk and shear
moduli of the matrix and the matrix density because they all depend
on the mineral volumes, and the fluid bulk modulus and density
because they both depend on water saturation), and such correla-
tions can be used as additional constraints in the inversion to mit-
igate the nonuniqueness of the solution. In our approach, the
linearized petrophysical AVO approximation is used to estimate
the posterior distribution of rock and fluid properties in the reservoir
in a Bayesian inversion framework.
Deterministic methods cannot capture the entire set of possible

solutions, but they can provide a local minimum. Probabilistic al-
gorithms, such as Bayesian inverse methods, are then preferable to
solve ill-conditioned problems and to quantify the uncertainty of the
model parameters (Gouveia and Scales, 1998; Ulrych et al., 2001;
Buland and Omre, 2003; Tarantola, 2005; Grana and Della Rossa,
2010; Liu and Grana, 2017). Buland and Omre (2003) apply the
Bayesian approach to elastic seismic inversion. Tjelmeland and
Omre (1997) and Eidsvik et al. (2004) use Bayesian approaches

to predict the spatial distribution of facies, whereas Buland and
Kolbjørnsen (2012) apply a Bayesian inversion algorithm to esti-
mate the resistivity model from electromagnetic data. Similar ap-
proaches were applied to predict petrophysical properties from
seismic data (Grana and Della Rossa, 2010; Rimstad and Omre,
2010; Jullum and Kolbjørnsen, 2016; Grana et al., 2017). Common
assumptions in Bayesian inversion include the linearization of the
forward model and the Gaussian distribution of the prior model and
the data-error term. Under these assumptions, the posterior distri-
bution of the model parameters is Gaussian and can be expressed
in a closed form. The analytical formulation can be extended to the
Gaussian mixture case (Grana and Della Rossa, 2010; Grana et al.,
2017). If the prior distribution of the model is not Gaussian distri-
bution and/or the forward model is not linear, Monte Carlo methods
can be applied to evaluate the posterior distribution of the model
(Doyen and Den Boer, 1996; Sen and Stoffa, 1996, 2013; Bosch
et al., 2010; Hammer et al., 2012). However, the application of these
methods might be time consuming because of the high dimensions
of model space.
We applied our method to a synthetic data set to test the validity

of the approach and to a real data set, including well-log data and a
2D seismic section, of a hydrocarbon reservoir in the Norwegian
Sea for a seismic reservoir characterization study.

METHODOLOGY

The prediction of rock and fluid properties from seismic data is
generally obtained by combining seismic and rock-physics inver-
sion. In this work, we propose a linearized model integrating a
rock-physics model with a convolutional model based on the reflec-
tivity method and use it in a Bayesian inverse approach.
The geophysical inverse problem can be written in the following

form:

d ¼ fðqÞ þ ε ¼ fðgðmÞÞ þ ε; (1)

where d represents the seismic data, q is the elastic attributes, m is
the reservoir properties, ε is the data error term, f is the seismic
model linking the seismic data d to the elastic attributes q, and
g is the rock-physics model linking the elastic attributes q to the
reservoir properties m.
In seismic-petrophysics inversion, the model parameters include

the reservoir properties of interestm, such as porosity, as well as rock
and fluid properties. In general, the forward models f and g are non-
linear. In the following subsections, we propose a linearization of the
joint forward models and apply it in a Bayesian inverse approach.

Forward model: Seismic model

For the linearization of the seismic forward model, we adopt a
linear operator based on the convolution between the seismic wave-
let and the reflection coefficients:

d ¼ Wrpp þ ε; (2)

where W represents a matrix associated with the wavelet, rpp rep-
resents the reflection coefficient series that is a function of the
elastic properties ðqÞ across the interfaces, and ε is the error term.
In an isotropic elastic medium, under the assumption of small
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elastic contrasts across the reflecting interface, the reflection coef-
ficient can be approximated by a sum of three terms that depend on
P- and S-wave velocities and density (Aki and Richards, 1980).
Stolt and Weglein (1985) extend Aki-Richards equation to the
time-continuous case:

rppðt; θÞ ¼
1

2
ð1þ tan2 θÞ ∂

∂t
ln VPðtÞ − 4

1

γ2
sin2 θ

∂
∂t
ln VSðtÞ

þ 1

2

�
1 − 4

1

γ2
sin2θ

�
∂
∂t
ln ρsatðtÞ; (3)

where θ is the incident angle, VPðtÞ and VSðtÞ are the P- and S-wave
velocities at a given time t, and γ is the VP∕VS ratio. Various for-
mulations of equation 3 have been proposed (Russell et al., 2011).
The AVO approximation based on Gray et al. (1999) is the most
suitable for the joint seismic-petrophysics inversion because it re-
lates the reflection coefficients to the saturated-rock elastic moduli
and density as

rppðt; θÞ ¼
�
1

4
−

1

3γ2

�
sec2 θ

∂
∂t
ln KsatðtÞ

þ 1

γ2

�
sec2 θ

3
− 2 sin2 θ

�
∂
∂t
ln GsatðtÞ

þ
�
2 − sec2 θ

4

�
∂
∂t
ln ρsatðtÞ; (4)

where Ksat, Gsat, and ρsat are the saturated-rock bulk modulus, shear
modulus, and density, respectively.

Forward model: Rock-physics model

The rock-physics model generally links the reservoir properties
of interest to the saturated-rock bulk modulus, shear modulus, and
density. In our work, the rock-physics model includes Gassmann’s
equation and Nur’s critical porosity model (Mavko et al., 2009).
Gassmann’s equation assumes that the porous material is isotropic
and homogeneous and that the pore space is connected and in
pressure equilibrium (Berryman, 1999; Mavko
et al., 2009) and is used to estimate the fluid ef-
fect of the elastic moduli when the porosity, the
elastic moduli of dry rock, and the elastic moduli
of the solid and fluid phases are known:

Ksat ¼ Kdry þ
2

ϕ
Kfl

þ 1−ϕ
Km

− Kdry

K2
m

; (5)

where Ksat is the saturated-rock bulk modulus,
Kdry is the dry-rock bulk modulus, Km is the ma-
trix bulk modulus, Kfl is the fluid bulk modulus,
and ϕ is the porosity. Gassmann’s model also as-
sumes that the saturated-rock shear modulus Gsat

is not affected by the pore fluids:

Gsat ¼ Gdry; (6)

where Gdry is the dry-rock bulk modulus. The elastic moduli of the
solid and fluid phases depend on the mineral volumes and fluid sat-
urations. Dry-rock elastic moduli are either measured in the labora-
tory (Murphy, 1984) or are computed by theoretical rock-physics
models (Mavko et al., 2009; Russell, 2013; Dvorkin et al., 2014).
A common model to estimate the dry-rock elastic moduli is Nur’s
critical porosity equation (Nur, 1992; Mavko and Mukerji, 1995),
where the dry-rock elastic moduli are expressed as linear functions
of porosity, with the coefficients of the linear regression depending on
the matrix elastic moduli, Km and Gm, and the critical porosity ϕ0:

Kdry ¼ Km

�
1 −

ϕ

ϕ0

�
; (7)

Gdry ¼ Gm

�
1 −

ϕ

ϕ0

�
: (8)

The saturated-rock density ρsat is generally computed as a linear
combination of the matrix density ρm and the fluid density ρfl
weighted by the solid and pore-space volume, respectively:

ρsat ¼ ρmð1 − ϕÞ þ ρflϕ: (9)

By combing Gassmann’s equation, Nur’s critical porosity model,
and the density equation, we obtain a system of rock-physics equa-
tions that links the elastic properties (Ksat,Gsat, and ρsat) in equation 4
to the reservoir properties of interest (Km; Gm; ρm; Kfl; ρfl, and ϕ).
The elastic moduli and density of the matrix depend on the mineral
composition of the solid phase of the porous rock. Similarly, the bulk
modulus and density of the fluid depend on the composition of the
pore fluid. In Figure 1a, we show that the physical relation between
Km andKsat is almost linear. The solid black lines represent the exact
rock-physics model, and the dotted red lines represent the linear
approximation. For the shear modulus and density, equations 6
and 8 show that Gsat is linear with respect to Gm, and equation 9
shows that ρsat is linear with respect to ρm. Therefore, we conclude
that the linearization of the saturated-rock elastic properties in terms
of the matrix elastic properties provide accurate results, as proven by

Figure 1. Numerical comparison of the exact rock-physics model (solid black lines) and
the linear approximation (dotted red lines) obtained by first-order Taylor’s series
approximation. (a) Saturated bulk modulus versus rock matrix bulk modulus (each line
refers to a porosity value; the porosity varies from 0 to 0.35; the water saturation is
constant), (b) saturated bulk modulus versus fluid bulk modulus (each line refers to
a porosity value; the porosity varies from 0 to 0.35; the mineral volumes are constant),
(c) saturated bulk modulus versus porosity (each line refers to a matrix bulk modulus;
the matrix bulk modulus varies from 24 to 36 GPa, corresponding to a variation in clay
volume from 0.75 to 0; the water saturation is constant).
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laboratory experiments (Mavko et al., 2009; Dvorkin et al., 2014).
The main nonlinearity in the rock-physics model is generally due
to the fluid effect. Ball et al. (2014) show that the nonlinear behavior
in Gassmann’s equation with respect to water saturation is due to the
fluid-mixture model, where the fluid bulk modulus is expressed by
the isostress average (Mavko et al., 2009):

1

Kfl

¼ sw
Kw

þ 1 − sw
Khc

; (10)

where Kw is the water bulk modulus, Khc is the hydrocarbon bulk
modulus, and sw is the water saturation. Additionally, Ball et al.
(2014) also point out that the saturated-rock bulk modulus obtained
from Gassmann’s equation is almost linear with respect to the fluid
bulk modulus, as shown in Figure 1b. Furthermore, equation 9 indi-
cates that ρsat is linear with respect to ρfl. Therefore, we conclude that
even though a linearization of the saturated-rock elastic properties in
terms of the fluid saturations is not possible in the presence of multi-
ple fluids, a linearization of the saturated-rock elastic properties in
terms of the fluid elastic properties provides accurate results. Finally,
the relation between porosity and the saturated-rock density is linear,
and the relation between porosity and the saturated-rock elastic prop-
erties is almost linear, as shown in Figure 1c.
Therefore, instead of expressing the rock-physics model in terms

of the petrophysical properties of interest, such as porosity ϕ, water
saturation sw, and clay volume vc, we propose to adopt a model
parameterization, including the matrix elastic moduli Km, Gm

and density ρm, fluid bulk modulus Kfl and density ρfl, and porosity
ϕ. These properties are then the inputs for the rock-physics model
for the computation of the saturated-rock bulk modulus Ksat, shear
modulus Gsat, and density ρsat. In other words, the vector of model
parameter m in equation 1 is equal to ½Km; Gm; ρm; Kfl; ρfl;ϕ�T and
the vector q is ½Ksat; Gsat; ρsat�T . The results in Figure 1 show that a
linearization of the rock-physics model g linking m to q provide
accurate results; however, differently from the seismic linearization
model, the rock-physics linearization is not explicitly available and
must be numerically computed. Therefore, we derive the linearized
expression of the forward model by computing the first-order
approximation of Taylor series expansion (Grana, 2016) of the log-
arithm of the elastic properties:

ln q ≈ gðm0Þ þ Jm0
ðm −m0Þ ¼ Jm0

mþ ðgðm0Þ − Jm0
m0Þ;
(11)

where m0 ¼ ½K̄m; Ḡm; ρ̄m; K̄fl; ρ̄fl; ϕ̄�T is assumed to be the mean
value of the model parameters. The quantity gðm0Þ − Jm0

m0 is a
constant value evaluated at m0, and Jm0

¼ JðmÞjm¼m0
is the Jaco-

bian of the rock-physics model, which can be written as evaluated at
m0:

JðmÞjm¼m0
¼

2
664

∂ ln Ksat

∂Km

∂ ln Ksat

∂Gm

∂ ln Ksat

∂ρm
∂ ln Ksat

∂Kfl

∂ ln Ksat

∂ρfl
∂ ln Ksat

∂ϕ
∂ ln Gsat

∂Km

∂ ln Gsat

∂Gm

∂ ln Gsat

∂ρm
∂ ln Gsat

∂Kfl

∂ ln Gsat

∂ρfl
∂ ln Gsat

ϕ
∂ ln ρsat
∂Km

ln ρsat
∂Gm

∂ ln ρsat
∂ρm

∂ ln ρsat
∂Kfl

∂ ln ρsat
∂ρfl

∂ ln ρsat
∂ϕ

3
775
jm¼m0

:

(12)

Appendix A shows the expression of the Jacobian. We then com-
bine equations 11 and 12 with equation 4 to obtain

rpp ¼
�
1

4
−

1

3γ2

�
sec2 θ

∂
∂t
ðc11Km þ c12Gm þ c13ρm

þ c14Kfl þ c15ρfl þ c16ϕþ const1Þ

þ 1

γ2

�
sec2θ

3
− 2 sin2 θ

�
∂
∂t
ðc21Km þ c22Gm þ c23ρm

þ c24Kfl þ c25ρfl þ c26ϕþ const2Þ

þ
�
2 − sec2 θ

4

�
∂
∂t
ðc31Km þ c32Gm þ c33ρm

þ c34Kfl þ c35ρfl þ c36ϕþ const3Þ; (13)

where the expression of the coefficients cij (for i ¼ 1; : : : 3 and
j ¼ 1; : : : ; 6) is given in Appendix A. By substituting the explicit ex-
pressions of the Jacobian in equation 13, we obtain the new formulation

rppðt; θÞ ¼ aKm

∂
∂t
KmðtÞ þ aGm

∂
∂t
GmðtÞ þ aρm

∂
∂t
ρmðtÞ

þ aKfl

∂
∂t
KflðtÞ þ aρfl

∂
∂t
ρflðtÞ þ aϕ

∂
∂t
ϕðtÞ; (14)

where

aKm
¼ c11

�
1

4
−

1

3γ2

�
sec2 θ; (15)

aGm
¼ c22

γ2

�
sec2 θ

3
− 2 sin2 θ

�
; (16)

aρm ¼ c33

�
2 − sec2 θ

4

�
; (17)

aKfl
¼ c14

�
1

4
−

1

3γ2

�
sec2 θ; (18)

aρfl ¼ c35

�
2 − sec2 θ

4

�
; (19)

aϕ ¼ c16

�
1

4
−

1

3γ2

�
sec2 θ þ c26

γ2

�
sec2 θ

3
− 2 sin2 θ

�

þ c36

�
2 − sec2 θ

4

�
: (20)

Inversion model

By combining equation 2 with equation 14, we obtain a joint
seismic-petrophysics linearized forward model:

d ¼ WADmþ ε ¼ Gmþ ε; (21)

where the matrix A contains the coefficients aKm
, aGm

, aρm , aKfl
,

aρfl , and aϕ (equations 15–20);D is the first-order difference matrix;
andG is equal toWAD. This formulation is similar to the linearized
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AVO formulation proposed in Buland and Omre (2003); however,
in our formulation, the model vector m includes petrophysical
parameters (rather than elastic parameters as in Buland and Omre,
2003) and the matrix A contains the coefficients of the new formu-
lation (equations 13–20) rather than the traditional Aki-Richards
coefficients, as in Buland and Omre (2003).
To solve the inverse problem, for the estimation of rock and fluid

properties, in this work we propose a Bayesian approach based on
Gaussian and linear assumptions (Tarantola, 2005). However, we
point out that any linear inverse method could be applied. In the
Bayesian approach, the posterior distribution of the model given
the data PðmjdÞ is proportional to the product of the likelihood
function times the prior distribution PðmjdÞ ∝ PðdjmÞPðmÞ.
We assume that the prior distribution of the model m ¼
½Km; Gm; ρm; Kfl; ρfl;ϕ�T is distributed as a Gaussian distribution
m ∼ Nðm; μm;ΣmÞ and that the error term ε ∼ Nðε; 0;ΣεÞ is also
Gaussian distribution with zero mean and covariance Σε. The prior
covariance matrix Σm can also include a spatial correlation model by
combining the time-invariant covariance matrix of the model proper-
ties with a vertical correlation function, as in Buland and Omre
(2003). Then, the posterior distribution of model parameters mjd ∼
Nðm; μmjd;ΣmjdÞ is also a Gaussian distribution and the posterior
mean μmjd and covariance matrixΣmjd can bewritten in the following
analytical form (Buland and Omre, 2003; Tarantola, 2005):

μmjd ¼ μm þ ΣmGTðGΣmGT þ ΣεÞ−1ðd −GμmÞ; (22)

Σmjd ¼ Σm − ΣmGTðGΣmGT þ ΣεÞ−1GΣm: (23)

Our approach allows predicting the most likely values and the
associated uncertainty (equations 22 and 23, respectively) of the
reservoir model parameters m (i.e., the matrix elastic moduli and
density, the fluid bulk modulus and density, and porosity, according
to our parameterization).
The forward model in matrix G depends on the value m0 used in

the linearization using Taylor’s series truncation. The formulation in
equations 13–20 assumes that m0 ¼ ½K̄m; Ḡm; ρ̄m; K̄fl; ρ̄fl; ϕ̄�T is
constant and is equal to the mean value of the model parameters be-
cause the value of the parameters is unknown priori. However, if the
value is far from the actual solution, the linearization might be inac-
curate for models with strong nonlinearities. To mitigate the problem,
we propose an iterative approach in which we assume m0 ¼
½K̄m; Ḡm; ρ̄m; K̄fl; ρ̄fl; ϕ̄�T , compute the solution of the inversion
problem, update the m0 value as m0 ¼ μmjd, and iterate until con-
vergence. Despite the lack of a convergence proof, there is numerical
evidence that the method should converge, at least for monotonic
functions. The iterative algorithm is as follows (Algorithm 1):

If the rock and fluid parameters are known, petrophysical proper-
ties such as mineral volumes (for example, clay content) and fluid
saturations (for example, water saturation) can be computed by
solving a nonlinear inversion based on Voigt-Reuss-Hill averages
and mass balance equations (Mavko et al., 2009). The estimation
of the posterior distributions of rock and fluid fractions can be ana-
lytically computed if the inverse function is defined. If we assume a
mixture of two minerals (for example, clay and quartz) and two
fluids (for example, water and hydrocarbon), we can use the follow-
ing forward model:

Km ¼ 1

2

�
vcKc þ ð1 − vcÞKq þ

1

vc∕Kc þ ð1 − vcÞ∕Kq

�
;

(24)

Gm ¼ 1

2

�
vcGc þ ð1 − vcÞGq þ

1

vc∕Gc þ ð1 − vcÞ∕Gq

�
;

(25)

ρm ¼ vcρc þ ð1 − vcÞρq; (26)

Kfl ¼
1

sw∕Kw þ ð1 − swÞ∕Khc

; (27)

ρfl ¼ swρc þ ð1 − swÞρhc; (28)

where Kc and Kq are the bulk moduli of clay and quartz, respec-
tively, Gc and Gq are their shear moduli, and ρc and ρq are their
densities; and Kw and Khc are the bulk moduli of water and hydro-
carbon, and ρw and ρhc are their densities. All these parameters are
assumed to be constant and known (for example, from the literature
or from laboratory measurements). The clay volume can be then
expressed as a function of three random variables, namely, Km,
Gm, and ρm; and the water saturation can be expressed as a function
of two random variables, namely, Kfl and ρfl.
If the distribution of the rock and fluid properties is known at a

given depth (from the Bayesian linearized petrophysical inversion,

Algorithm 1. Iterative Bayesian linearized inversion.

1 Initialize m0 ¼ ½K̄m; Ḡm; ρ̄m; K̄fl; ρ̄fl; ϕ̄�T
2 Compute posterior mean μmjd and covariance Σmjd
3 Select a tolerance T

4 While kd −GðμmjdÞk < T do

5 Set m0 ¼ μmjd
6 Update G

7 Compute posterior mean μmjd and covariance Σmjd
8 end

Table 1. Model parameters for three different geologic
models (two-layer, single-interface model). For each model,
the top row shows the values of the top layer, and the
bottom row shows the values of the bottom layer.

Km
(GPa)

Gm
(GPa)

ρm
(g∕cm3)

Kfl
(GPa)

ρfl
(g∕cm3)

ϕ

Model 1 36.00 45.00 2.65 2.25 1.03 0.25

29.00 36.00 2.57 2.25 1.03 0.25

Model 2 36.00 45.00 2.65 0.63 0.64 0.25

36.00 45.00 2.65 2.25 1.03 0.25

Model 3 36.00 45.00 2.65 2.25 1.03 0.25

36.00 45.00 2.65 2.25 1.03 0.15
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equations 22 and 23), then the posterior distribu-
tions of clay volume and water saturation,
fvcðvcÞ and fswðswÞ, respectively, can be com-
puted as a function of random variables (Papou-
lis, 1984):

fvcðvcÞ¼
d
dvc

FvcðvcÞ

¼ d
dvc

Zρq

d3

ZGq

d2

ZKq

d1

fKm;Gm;ρmðKm;Gm;ρmÞ

×dKmdGmdρm; (29)

fswðswÞ ¼
d
dsw

FswðswÞ

¼ d
dsw

Zc2
ρhc

Zc1
Khc

fKfl;ρflðKfl;ρflÞdKfldρfl;

(30)

where FvcðvcÞ and FswðswÞ are the cumulative
density functions (cdf) of the clay volume
and water saturation; the expressions of d1,
d2, d3, c1, and c2 are computed from
equations 24–28, respectively (see Ap-
pendix B), and fKm ;Gm ;ρmðKm;Gm;ρmÞ¼
NðμKm ;Gm ;ρm jd;ΣKm ;Gm;ρmjdÞ; and fKfl;ρflðKfl;ρflÞ¼
NðμKfl;ρfljd;ΣKfl;ρfljdÞ are the marginal probability
density functions of the rock and fluid parameters
obtained from equations 22 and 23. The derivation
of the integration domain is shown in Appendix B.
Alternatively, the posterior distributions of the rock
and fluid fractions could be evaluated by applying
the method proposed by Buland et al. (2008).

Figure 2. Comparison between reflection coefficients derived from the traditional Aki-
Richards approximation (solid black lines), full Zoeppritz equations (dotted magenta
lines), and the new proposed formulation (dotted red lines) as a function of the incident
angle for a two-layer model. (a) Model 1 with different mineral compositions in the top
and bottom layers, (b) model 2 with different fluid saturations in top and bottom layers,
and (c) model 3 with different porosity values in top and bottom layers.

Figure 3. Well logs and interpreted curves of the reference well. (a) P-wave velocity,
(b) S-wave velocity, (c) density, (d) porosity, (e) water saturation, and (f) clay
volume.

Figure 4. Rock and fluid properties computed from well logs and predicted using the exact rock-physics model. (a) saturated-rock bulk
modulus, (b) saturated-rock shear modulus, (c) saturated-rock density, (d) matrix bulk modulus, (e) matrix shear modulus, (f) matrix density,
(g) fluid bulk modulus, and (h) fluid density. The black lines are calculated from the well logs; the blue lines are calculated using the rock-
physics model.
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APPLICATIONS

Illustrative example

We first created three simple two-layer geologic models (Table 1)
to verify the accuracy of the linearized model compared with the
actual rock-physics model. In particular, we compare the reflection
coefficients derived through the Aki-Richards approximation
(where the elastic properties of the two layers are computed using
the full rock-physics model) and those computed through the new
proposed approximation, as a function of the incident angle. In the
three examples, we assumed that the contrast is caused by changes
in the mineralogy, the fluid content, and the pore-space volume,
respectively. In the first model, the top layer is clean sand with
100% quartz and the bottom layer is sand with 40% clay (Table 1).
We assume that both layers are fully saturated by water and the
porosity is equal to 0.25 in both layers. In the second model, we
assume a high-porosity sandstone in both layers; the top layer is

Figure 5. Comparison between the synthetic seismic data com-
puted by the Aki-Richards approximation (equation 3, solid black
lines) and the new formulation (equation 14, dotted red lines).

Figure 6. Histograms and bivariate distributions of detrended well-log data and corresponding marginal distributions. The univariate marginal
distributions are normalized to allow the comparison with the corresponding histograms in the frequency domain.
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partially saturated by gas, and the bottom layer is fully saturated by
water (Table 1). In the third model, we assume a water-saturated
sandstone in both layers; the porosity of the top layer is 0.25,
and the porosity of the bottom layer is 0.15 (Table 1). The computed
reflection coefficients for these three models are shown in Figure 2.

The AVO curves derived from the new approximation (equation 14)
provide a good approximation of those obtained from the Aki-
Richards approximation (equation 3). For completeness of the
information, we also computed the results to the reflection coeffi-
cients obtained from the full Zoeppritz equations (Figure 2); if the

Aki-Richards approximation is not valid, then
our linearized petrophysical AVO approximation
also fails.

Synthetic and real-data example

In the following subsections, we apply the in-
version method to the Norne field data set. The
field includes two compartments: the Norne main
structure consisting of the Norne C, D, and E
segments, and the northeast segment consisting
of the Norne G segment. In this study, we focus
on segment E, situated at the northernmost part
of the field, and it includes an oil reservoir in
the IIe and Tofte Formations, in the Lower and
Middle Jurassic age (Steffensen and Karstad,
1995; Osdal et al., 2006; Suman and Mukerji,
2013). The available data include a set of well
logs from a reference well and a preprocessed
partial-stacked seismic survey with three partial
angle stacks acquired in 2001. Well-log data are

shown in Figure 3 and include the P-wave velocity, S-wave velocity,
density, porosity, water saturation, and clay volume.
We first calibrate the rock-physics model at the well location. The

solid phase is made of a mixture of clay minerals (Kc ¼ 19 GPa,
Gc ¼ 10 GPa, ρc ¼ 2.59 g∕cm3) and a mixture of quartz and feld-
spar (Kq ¼ 25 GPa, Gq ¼ 20 GPa, ρq ¼ 2.64 g∕cm3); the matrix
bulk and shear moduli are computed using the Voigt-Reuss-Hill
average. The critical porosity is equal to 0.49 according to an aver-
age value estimated in the interval of interest. To calculate the fluid
bulk modulus, we use the Reuss average (equation 10). The rock-
physics model includes Nur’s critical porosity model, Gassmann’s
equation, and the density equation, and it is assumed to be the same
in the different facies. Because of the low effective porosity of clay,
the rock-physics model in the intervals with high clay volume re-

duces to the elastic and density averages for the
shale (as in Grana and Della Rossa, 2010). Fig-
ure 4 shows the comparison between the rock-
physics model predictions and the actual data
computed from the sonic log (Figure 3).
First, we apply the inversion method to a syn-

thetic seismic data set computed using the actual
well logs and assuming a signal-to-noise ratio
equal to 2.5; then, we apply the inversion
method to the observed seismic trace collocated
at the well location and to a 2D seismic section
passing through the well location. Initially, we
generated a set of synthetic seismograms, in-
cluding six partial angle stacks corresponding
to the angles 5°, 10°, 15°, 20°, 25°, and 30°, with
a sampling rate of 2 ms, using a Ricker wavelet
with zero-phase and dominant frequency of
40 Hz for all the angle stacks. In Figure 5, we
show the synthetic data computed using the

Table 2. Correlation matrix of the prior model.

Km Gm ρm Kfl ρfl ϕ

Km 1 0.9 0.9 −0.4 −0.4 0.7

Gm 0.9 1 0.9 −0.4 −0.4 0.7

ρm 0.9 0.9 1 −0.4 −0.4 0.7

Kfl −0.4 −0.4 −0.4 1 0.9 −0.6
ρfl −0.4 −0.4 −0.4 0.9 1 −0.6
ϕ 0.7 0.7 0.7 −0.6 −0.6 1

Figure 8. Inversion of synthetic seismic data (Figure 5). Posterior probability distribu-
tion of (a) matrix bulk modulus, (b) matrix shear modulus, (c) matrix density, (d) fluid
bulk modulus, (e) fluid density, and (f) porosity. The legend and colors are as in Figure 7.

Figure 7. Prior distribution of the model parameters: (a) matrix bulk modulus, (b) matrix
shear modulus, (c) matrix density, (d) fluid bulk modulus, (e) fluid density, and (f) poros-
ity. The blue lines represent the reference values; the red lines represent the 95% con-
fidence interval of the prior distribution (the solid lines represent the mean, and the
dashed lines represent the percentiles).
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convolution model with reflectivity coefficients computed using
the Aki-Richards approximation (equation 3, the solid black lines)
and the new approach (equation 14, the dotted red lines).
The inversion workflow is then applied to the synthetic seismic

data generated by the Aki-Richards approximation. The goal is to
derive the posterior probability distribution of the six reservoir
properties of interest (matrix bulk modulus, matrix shear modulus,
matrix density, fluid bulk modulus, fluid shear modulus, and poros-
ity) given the seismic data. Overall, the data are not Gaussian be-
cause of the presence of depth trends; however, the distribution of
the model properties can be locally approximated with a Gaussian
distribution with locally variable mean equal to the low-frequency
trend. In Figure 6, we show the univariate and bivariate marginal
distributions of the model parameters, where we detrended the data
(i.e., we subtracted the low-frequency trend and added a constant
mean value).
For the prior model, we then assume a Gaussian distribution with

a variable mean obtained from a low-frequency model obtained by
filtering the actual well-log data. The prior means and the 95% con-
fidence intervals are shown in Figure 7. The prior variances are as-
sumed to be equal to the variances of the properties computed from
the well logs. The prior correlation matrix (Table 2) is estimated
from well-log data, and it shows a high correlation between some
of the model properties (for example, the matrix bulk modulus and
matrix shear modulus).
By applying equations 22 and 23, we compute the mean and the

covariance matrix of the posterior distribution of the model
parameters. The inverted results are shown in Figure 8. Overall,
the inverted results are satisfactory because the reference property
values (the blue lines) fall inside the high-probability region
and the predicted property values (the solid red lines) match
the reference model, as shown by the coverage ratios and corre-
lations, respectively (Table 3). The coverage ratio is defined as
the percentage of reference values falling inside the 95% confi-
dence interval (the dashed red lines), and it measures the quality
of the uncertainty quantification. The correlation between
predicted and reference properties quantifies the accuracy of
the inverted most likely model. In general, the correlation values
are relatively low due to the limited resolution of the inverted
model.
Then, we apply inverse approach to the real

seismic data set to estimate the posterior distribu-
tion of the model parameters. Figure 9 shows
a 2D seismic line passing through the well.
The near angle corresponds to 10°, the mid angle
to 23°, and the far angle to 35°. The sampling rate
of the seismic data is 4 ms. The wavelets for each
angle stacks are extracted from the seismic data
and are zero phase with dominant frequencies
equal to 24, 22, and 21 Hz, respectively. The sig-
nal-to-noise ratio of the data set is approximately
2.0. We use the same prior model as in the syn-
thetic example. First, we apply the inversion
workflow at the well location. The inverted re-
sults are shown in Figure 10. The accuracy and
precision of the inversion are quantified in
Table 3.
Water saturation and clay volume can be es-

timated from the predicted properties by solving

Table 3. Coverage ratio and correlations of the model
properties for the synthetic and real case application at the
well location.

Correlation
(synthetic)

Coverage ratio
(synthetic)

Correlation
(real)

Coverage
ratio (real)

Km 0.74 0.977 0.65 0.953

Gm 0.75 0.977 0.66 0.965

ρm 0.73 0.977 0.64 0.942

Kfl 0.86 1 0.91 1

ρfl 0.90 1 0.91 1

ϕ 0.82 0.977 0.67 0.977

Figure 9. Two-dimensional seismic sections passing through the
well location (black triangle): (a) angle stack 10°, (b) angle stack
23°, and (c) angle stack 35°.

Figure 10. Inversion of real seismic data at the well location. Posterior probability dis-
tribution of (a) matrix bulk modulus, (b) matrix shear modulus, (c) matrix density,
(d) fluid bulk modulus, (e) fluid density, and (f) porosity. The legend and colors are
as in Figure 7.
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a nonlinear inversion based on Voigt-Reuss-Hill averages. We ana-
lytically compute the cdf of water saturation and clay volume, and
we compute their posterior distribution by evaluating the numeri-
cal derivatives of the cdfs (equations 29 and 30). The inverted re-
sults are shown in Figure 11 (the plot includes porosity that is
directly obtained from the Bayesian linear inversion). The mar-
ginal posterior distributions of water saturation and clay volume
are not Gaussian anymore but are skewed toward the boundaries of
the property ranges.
Finally, we apply inverse approach to a 2D seismic section with

three angle stacks. The approach is applied trace by trace. The prior

model is built by interpolating the prior model at the well location
along the seismic horizon of the 2D seismic section, assuming a con-
stant covariance matrix. The inverted results of the matrix bulk modu-
lus, matrix shear modulus, matrix density, fluid bulk modulus, fluid
density, and porosity obtained using a Bayesian Gaussian linearized
inversion are shown in Figure 12, and the inverted results of porosity,
water saturation, and clay volume obtained using nonlinear relations
are shown in Figure 13. Well-log data are superimposed to the 2D
sections for comparison purposes and show a good match.

DISCUSSION

Our linearized petrophysical AVO approximation is presented for a
rock-physics model that combines Gassmann’s equation and Nur’s
critical porosity model, but it could be extended to other models, such
as inclusion and granular media models because the linearization is
computed using Taylor series expansions (Grana, 2016). However,
such an extension might require the numerical evaluation of the
first-order partial derivatives of the Jacobian of the rock-physics
model due to the complexity of the model equations. In some appli-
cations, the numerical expression of the Jacobian might also be more
robust than the analytical approximation. We point out that linearized
approximations might fail for some rock-physics equations that are
nonlinear in some of the model parameters, such as the soft sand
model with respect to porosity or the homogeneous fluid mixture
with respect to the fluid saturations.
The linearized petrophysical AVO approximation can be used in

a single-loop inversion workflow to predict the reservoir properties
of interest. In our approach, we adopt a Bayesian Gaussian-linear
inversion method (Buland and Omre, 2003) to estimate the posterior
distribution of the model parameters; however, any other linear in-
verse method could be used. The advantage of our formulation is
that the linearization of the forward model allows estimating the
solution of the inverse problem using analytical forms resulting
in low computational effort. The drawback of our method is that
the forward model is linear in a parameterization that includes elas-
tic moduli and density of the solid and fluid phases rather than min-

eral volumes and fluid saturations. However, the
volumetric fractions of interest can be estimated
using a nonlinear inversion. A limitation of our
approach for practical applications is due to the
number of model variables, which is generally
larger than the number of measured data, i.e.,
the number of partial angle stacks. If the number
of partial angle stacks is less than the number
of model variables, the problem is underdeter-
mined. Such a limitation can be mitigated by im-
posing a strong correlation between some of the
model variables in the prior distribution, for ex-
ample, assuming that the bulk and shear modulus
of the solid have correlation close to one. Such an
assumption, however, should be validated using
laboratory measurements or well-log data.
In our approach, we adopted the same rock-

physics model; however, different models could
be used in different lithologies if a preliminary
facies classification is available (as in Ulvmoen
and Omre, 2010) or in a joint facies/rock-phys-
ics inversion workflow (as in Rimstad and

Figure 12. Two-dimensional sections of inverted model parameters: (a) matrix bulk
modulus, (b) matrix shear modulus, (c) matrix density, (d) fluid bulk modulus, (e) fluid
density, and (f) porosity. The black triangle indicates the well location.

Figure 11. Inverted petrophysical parameters at the well location.
(a) Porosity, (b) clay volume, and (c) water saturation. The legend
and colors are as in Figure 7.
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Omre, 2010; Grana et al., 2017). Our approach is applied trace by
trace. The inversion method includes a vertical correlation func-
tion, estimated from the reference well logs, to account for the
spatial continuity of the model in the vertical component. The spa-
tial continuity in the seismic data guarantees a lateral continuity in
the inverted model; however, a spatial correlation function in the
lateral direction could also be included (as in Ulvmoen and
Omre, 2010).

CONCLUSION

We presented a new formulation of a linearized seismic-petro-
physics forward model based on the combination of an AVO
approximation with a linearized rock-physics model, achieved by
applying a first-order truncation of the Taylor’s series expansion.
In our formulation, the rock-physics model consists of Nur’s critical
porosity and Gassmann’s equations. The parameterization chosen
for the model linearization includes porosity as well as the elastic
moduli and density of the solid and fluid phases because our for-
mulation is almost linear in these parameters. In our application, the
approximated model fits the well-log data and the linearized
approximation provides an accurate forward model. The lineariza-
tion of the model allows using linear inverse theory and obtaining
the solution of the reservoir characterization inverse problem in a
single-loop inversion with a limited computational effort. In our
work, we combine the new formulation with Bayesian Gaussian-
linear inverse theory to predict the distribution of the reservoir prop-
erties of interest. The application of the linearized petrophysical
AVO approximation in the context of geophysical inverse modeling
to synthetic and real data set provided satisfactory results.
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APPENDIX A

PARTIAL DERIVATIVES OF LINEARIZED
FORWARD MODEL

First, we show the computation of the elements of the Jacobian
matrix in equation 12. The partial derivatives of the log-transformed
saturated-rock bulk modulus ðKsatÞ with respect to the model
parameters ðKm; Gm; ρm; Kfl; ρfl;ϕÞ are

c11¼
∂ lnKsat

∂Km jm¼m0

¼ K̄2
flð1−ϕ0Þð1−ϕ0þ ϕ̄Þþ2K̄mK̄flð1−ϕ0Þðϕ0− ϕ̄Þþ K̄2

mϕ0ðϕ0− ϕ̄Þ
½K̄mK̄flð1−ϕ0þ ϕ̄Þþ K̄2

mðϕ0− ϕ̄Þ�½K̄flð1−ϕ0Þþ K̄mϕ0�
(A-1)

c12 ¼
∂ ln Ksat

∂Gm jm¼m0

¼ 0; (A-2)

c13 ¼
∂ ln Ksat

∂ρm jm¼m0

¼ 0; (A-3)

c14 ¼
∂ ln Ksat

∂Kfl jm¼m0

¼ ϕ̄K̄m

½K̄flð1−ϕ0þ ϕ̄Þþ K̄mðϕ0− ϕ̄Þ�½K̄flð1−ϕ0Þþ K̄mϕ0�
;

(A-4)

c15 ¼
∂ ln Ksat

∂ρfl jm¼m0

¼ 0; (A-5)

c16 ¼
∂ ln Ksat

∂ϕ jm¼m0

¼ K̄fl − K̄m

K̄flð1 − ϕ0 þ ϕ̄Þ þ K̄mðϕ0 − ϕ̄Þ :

(A-6)

The partial derivatives of the log-transformed saturated-rock
shear modulus ðGsatÞ with respect to the model parameters
ðKm; Gm; ρm; Kfl; ρfl;ϕÞ are

c21 ¼
∂ ln Gsat

∂Km jm¼m0

¼ 0; (A-7)

Figure 13. Two-dimensional sections of inverted petrophysical
parameters: (a) porosity, (b) clay volume, and (c) water saturation.
The black triangle indicates the well location.

Petrophysical AVO inversion M11

D
ow

nl
oa

de
d 

03
/2

7/
18

 to
 1

29
.7

2.
19

0.
18

9.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



c22 ¼
∂ ln Gsat

∂Gm jm¼m0

¼ 1

Ḡm

; (A-8)

c23 ¼
∂ ln Gsat

∂ρm jm¼m0

¼ 0; (A-9)

c24 ¼
∂ ln Gsat

∂Kfl jm¼m0

¼ 0; (A-10)

c25 ¼
∂ ln Gsat

∂ρfl jm¼m0

¼ 0; (A-11)

c26 ¼
∂ ln Gsat

∂ϕ jm¼m0

¼ 1

ϕ̄ − ϕ0

: (A-12)

The partial derivatives of the log-transformed saturated-rock
density ðρsatÞ with respect to the model parameters
ðKm; Gm; ρm; Kfl; ρfl;ϕÞ are

c31 ¼
∂ ln ρsat
∂Km jm¼m0

¼ 0; (A-13)

c32 ¼
∂ ln ρsat
∂Gm jm¼m0

¼ 0; (A-14)

c33 ¼
∂ ln ρsat
∂ρm jm¼m0

¼ 1 − ϕ̄

ρ̄mð1 − ϕ̄Þ þ ρ̄flϕ̄
; (A-15)

c34 ¼
∂ ln ρsat
∂Kfl jm¼m0

¼ 0; (A-16)

c35 ¼
∂ ln ρsat
∂ρfl jm¼m0

¼ ϕ̄

ρ̄mð1 − ϕ̄Þ þ ρ̄flϕ̄
; (A-17)

c36 ¼
∂ ln ρsat

∂ϕ jm¼m0

¼ ρ̄fl − ρ̄m
ρ̄mð1 − ϕ̄Þ þ ρ̄flϕ̄

: (A-18)

APPENDIX B

FUNCTION OF MULTIPLE RANDOM
VARIABLES

If a random variable z is a function of two (or more) random
variables, z ¼ gðx; yÞ, then its cdf FzðzÞ can be computed as

FzðzÞ ¼
Z

Dzðx;yÞ

fx;yðx; yÞdxdy; (B-1)

where fx;yðx; yÞ is the probability density function of the input var-
iables and the integration domain Dzðx; yÞ is defined as the region
where gðx; yÞ ≤ z.
In our approach (two minerals and two fluid components), the

random variable z can be the clay volume or the water saturation;
the function g is the inverse function of equations 24–28; the input
variables are the elastic moduli and densities of solid and fluid; and
the input pdf is the probability distribution obtained from the Baye-
sian linearized inversion. The clay volume is as a function of three
random variables (Km, Gm, and ρm), and the water saturation is as a
function of two random variables (Kfl and ρfl). For illustration pur-
poses, we show the derivation of the integration domain for water
saturation.
For a given value of sw, we solve the inequality gðKfl; ρflÞ ≤ sw,

assuming that the function g is the inverse of equations 27 and 28:

1
Kfl

− 1
Khc

1
Kw

− 1
Khc

≤ sw; (B-2)

ρfl − ρhc
ρw − ρhc

≤ sw; (B-3)

and we obtain

Kfl ≤
1

sw

�
1
Kw

− 1
Khc

�
þ 1

Khc

¼ c1; (B-4)

ρfl ≤ swðρw − ρhcÞ þ ρhc ¼ c2; (B-5)

assuming Kw ≥ Khc and ρw ≥ ρhc. Therefore, the domain
DswðKfl; ρflÞ ¼ ð−∞; c1� × ð−∞; c2�. However, because the water
saturation cannot be lower than zero, the lower limit of the fluid
bulk modulus is Khc (for sw ¼ 0) and the lower limit of the fluid
density is ρhc (for sw ¼ 0). Hence, the domain DswðKfl; ρflÞ ¼
½Khc; c1� × ½ρhc; c2�, with Khc ≤ c1 ≤ Kw and ρhc ≤ c2 ≤ ρw.
Similarly, we can derive the integration domainDvcðKm; Gm; ρflÞ

for the clay volume. For a given value of vc, we solve the inequality
gðKm; Gm; ρmÞ ≤ vc assuming that the function g is the inverse of
equations 24–26 (notice that equations 24 and 25 lead to quadratic
inequalities), and we obtain

Km ≥
1

2

�
vcKcþð1− vcÞKqþ

1

vc∕Kcþð1− vcÞ∕Kq

�
¼ d1;

(B-6)
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Gm ≥
1

2

�
vcGcþð1− vcÞGqþ

1

vc∕Gcþð1−vcÞ∕Gq

�
¼ d2;

(B-7)

ρm ≥ vcρc þ ð1 − vcÞρq ¼ d3; (B-8)

by assuming Kc ≤ Kq, Gc ≤ Gq, and ρc ≤ ρq and discarding
the negative solutions. Therefore, we obtain that the domain
DvcðKm; Gm; ρflÞ ¼ ½d1;þ∞Þ × ½d2;þ∞Þ × ½d3;þ∞Þ. Because
the clay volume cannot be greater than one, we obtain that the
domain DvcðKm; Gm; ρflÞ ¼ ½d1; Kq� × ½d2; Kq� × ½d3; Kq�, with
Kc ≤ d1 ≤ Kq; Gc ≤ d2 ≤ Gq, and ρc ≤ d3 ≤ ρq.
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