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Abstract— Carbon dioxide sequestration in deep saline aquifers
and depleted reservoirs relies on numerical models for the
prediction of the spatial distribution of CO2 saturation during
injection and migration. Due to the limited knowledge of the
rock and fluid properties before injection, model predictions are
often uncertain and must be updated when new measurements
are available. The spatial distribution of CO2 saturation and the
plume location can be monitored using time-lapse geophysical
data, such as seismic and controlled source electromagnetic
surveys. We propose a geostatistical inversion approach for the
prediction of the time-dependent spatial distribution of CO2

saturation from geophysical data. The methodology is based on
the application of a stochastic optimization method, the Ensemble
Smoother, for the solution of the inverse problem, using rock
physics and geophysical models. The inversion is applied to
the difference in the geophysical data acquired before and
during injection. The predicted models of CO2 saturation are
obtained by updating an ensemble of geostatistically generated
prior realizations, based on the misfit between geophysical model
predictions and measured data. The novelty of the approach
is the integration of geostatistical algorithms and stochastic
optimization methods for the joint inversion of geophysical data.
The proposed approach allows including hydrological constraints
in the prior model and quantifying the prediction uncertainty due
to the noise and resolution of the data and approximations in
the physical relations. The method is applied to the Johansen
formation model, offshore Norway, using synthetic seismic and
electromagnetic data.

Index Terms— CO2 sequestration, inverse problems, reservoir
geophysics, rock physics, stochastic methods.

I. INTRODUCTION

MONITORING of injection and migration of CO2 in
deep saline aquifers requires accurate and precise pre-

dictions of the temporal–spatial distribution of CO2 and water,
that is, the saturation values of CO2 and water at each
location in the reservoir and their changes through time [1].
If the distributions of CO2 and water are known at a given
time during injection or migration, their distribution at any
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future time can be predicted by simulating the fluid flow
in the aquifer, according to the injection parameters and the
petrophysical properties of the porous rocks, such as porosity
and permeability. Fluid flow models and stochastic simulations
are commonly used in geoscience applications to predict fluid
displacement in porous rocks, as in hydrogeology [2] and
energy resources [3]. However, the rock and fluid properties in
the subsurface are generally unknown due to the lack of direct
measurements that are generally available at the borehole loca-
tions only. Therefore, the predictions of fluid saturations are
generally uncertain and often inaccurate. The rock and fluid
properties can be predicted and updated using the available
geophysical data (seismic, electromagnetic, or gravity data) by
solving inverse problems based on geophysical models, such as
rock physics, seismic wave propagation, and electromagnetic
equations [4].

Carbon capture, utilization, and storage in deep saline
aquifers have been widely studied [1], [5], and [6]. Several
studies focus on geological and geophysical methods to quan-
tify the capacity of the storage unit and fluid flow simulation
to predict the CO2 plume location and the pressure front
extent [7]–[12]. Geophysical surveys, in particular reflection
seismic data, have often been used for pre-injection reservoir
characterization [13]–[20]. Most of these studies use seismic
data to predict the petrophysical properties, primarily porosity.
Controlled source electromagnetic data are generally more
sensitive to fluid volumes than seismic data and are commonly
used to map fluid saturations in the subsurface [21]–[30].
The joint inversion of seismic and electromagnetic data has
been proposed in the recent geophysical literature [31]–[37].
However, a comprehensive workflow for updating saturation
models and for uncertainty quantification based on fluid flow
simulations and monitoring geophysical data is still missing.

The estimation of CO2 and water saturation based on
geophysical measurements during injection and migration is
an inverse problem where the model variables are the time-
dependent saturations in the reservoir and the data are the
time-lapse geophysical measurements (i.e., seismic and elec-
tromagnetic responses). The goal is to predict the saturation
values at any time and location in the reservoir and quantify
their uncertainty. Several mathematical algorithms have been
presented, including stochastic methods [17], [38], and [39].
In time-dependent problems, such as subsurface model updat-
ing with time-dependent data, data assimilation methods are
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generally used to update the reservoir model. The ensemble-
based methods represent a particular category of algorithms
in which an ensemble of models is simultaneously updated to
match the observed measurements. The ensemble-based meth-
ods include filtering and smoothing algorithms such as Ensem-
ble Kalman filter and the Ensemble Smoother [40]–[43] and
have been applied to borehole measurements and geophysical
data [44]–[50].

In this work, we propose to apply the ensemble-based
methods to fluid saturation predictions from time-lapse geo-
physical data. The proposed inversion approach combines
geostatistical methods for the generation of the prior models
and a stochastic optimization algorithm for the updating of
the models conditioned on the geophysical data. To generate
initial model realizations that preserve the hydrological realism
of the saturation distributions, we propose to generate the
prior realizations by sampling from a large ensemble of fluid
flow simulations with variable petrophysical properties, and
we update them based on the data misfit. The method is
validated on the Johansen formation, offshore Norway. The
reservoir model has been presented in [14] and [15]. The
synthetic time-lapse geophysical data set includes seismic and
controlled source electromagnetic (CSEM) data. The geosta-
tistical approach to geophysical inversion allows predicting
accurately the CO2 and water spatial distributions, and the
use of fluid flow simulations for prior models guarantees real-
istic hydrological features. We first predict the porosity from
seismic data (pre-injection survey) assuming that the aquifer
is initially saturated with water and then estimate the CO2

saturation from time-lapse measurements. This study proves
the value of the proposed probabilistic modeling method for
monitoring the CO2 plume displacement using geophysical
data.

II. METHODOLOGY

We present the inversion method for the prediction of rock
and fluid properties given a set of geophysical measurements.

A. Problem Setting

In the proposed mathematical notation, the model vector
m represents the rock and fluid properties (porosity and CO2

saturation) at each location in the spatial model at a given
time and the data vector d represents the geophysical mea-
surements, including seismic amplitudes and travel times and
electromagnetic amplitudes and phases. The mathematical-
physical operator f that links the model variables to the data
predictions is given by

d = f (m) + e (1)

where e is the error vector [51]. The operator f might
include wave propagation equations, Maxwell’s equations for
the electrical and magnetic fields, and rock physics models
to relate porosity and fluid saturations to electrical resistivity
and elastic properties. The operator f might assume differ-
ent formulations in different lithologies and rock formations
depending on the mineral composition and structure of the
porous rocks [4].

The solution of the inverse problem is an approximate
model m̂ that minimizes the mismatch between data and model
predictions

m̂ = argminm||d − f (m)||. (2)

We adopt a Bayesian approach and compute the posterior
distribution p(m|d) of the model parameters given the data
using Bayes’ rule

p(m|d) = kp(d|m)p(m) (3)

where p(m) is the prior distribution of the model parameters,
p(d|m) is the likelihood associated with the operator f ,
and k = 1/p(d) = 1/

∫
p(d|m)p(m)dm is a normalizing

constant. In the proposed approach, the error vector e is
assumed to be distributed according to a multivariate Gaussian
distribution N(e; 0,�e) with 0 mean and known covariance
matrix �e and is assumed independent of the model variables.
The posterior mean of the distribution p(m|d) is the most
probable model m̂ of porosity and CO2 saturation.

B. Geophysical Forward Model

We first present the geophysical models used to predict the
geophysical response of the aquifer model. The geophysical
relations used to predict the seismic and electromagnetic
response for all the possible combinations of rock and fluid
properties in the model include the following: 1) elastic rock
physics model; 2) electrical rock physics model; 3) seismic
model; and 4) electromagnetic model.

We assume one mineral phase (e.g, quartz) and two fluid
components, water and CO2. Therefore, the variables of inter-
est are porosity φ, water saturation Sw , and CO2 saturation
1 − Sw (where the scalar notation is used to indicate the
value at a given location in the model). There are sev-
eral rock physics models to compute the elastic response
(i.e., P-wave velocity, S-wave velocity, and density) of fluid
saturated porous rocks with given porosity φ and water satu-
ration Sw [4]. In the proposed approach, we use the soft sand
model combined with Gassmann’s equations and the density
equation. The density of the fluid saturated rock ρ(φ, Sw)
is computed as a multilinear function of porosity and water
saturation

ρ(φ, Sw) = (1 − φ)ρm + φρ f =
= (1 − φ)ρm + φ[(1 − Sw)ρCO2 + Swρw] (4)

where ρm is the density of the mineral phase, and ρ f is the
density of the fluid mixture and depends on water saturation
Sw and the densities of CO2 and water, ρCO2 and ρw. The
P- and S-wave velocities are computed from the elastic moduli
and density of the saturated rock. Because we assume one
mineral phase, the bulk and shear moduli of the solid are the
characteristic values of quartz [4]. In a multimineral setting,
approximations of the elastic moduli can be computed using
Voigt–Reuss–Hill or Hashin–Shtrikman elastic bounds [4].
The bulk and shear moduli of the dry rock, Kφc and Gφc ,
at the critical porosity φc (i.e., the maximum porosity of a
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porous rock, beyond which the system can be considered a
suspension) are computed using Hertz–Mindlin equations

Kφc = 3

√
c2(1 − φc)2G2

0

18π2(1 − ν0)
2 P

Gφc = 5 − 4ν0

5(2 − ν0)
3

√
3c2(1 − φc)2G2

0

2π2(1 − ν0)
2 P (5)

where c is the average number of contacts per grain, G0

is the shear modulus of the solid phase (at 0 porosity),
ν0 is the Poisson’s ratio of the solid phase, and P is the
effective pressure. The bulk and shear moduli of the dry rock,
Kd(φ) = kH S−(φ, K0, Kφc ) and Gd(φ) = gH S−(φ, G0, Gφc),
for porosity φ ∈ [0, φc], are computed using an harmonic
average of the elastic moduli of the solid phase (K0, G0)
and the elastic moduli at the critical porosity (Kφc , Gφc),
using the functions kHS− and gHS− representing the modified
Hashin–Shtrikman lower bounds [4]. The bulk modulus of
the saturated rock, Ks(φ, Sw) is computed using Gassmann’s
equation

Ks(φ, Sw) = Kd(φ) +
(

1 − Kd(φ)
K0

)2

φ
K f (Sw)

+ (1−φ)
K0

− Kd (φ)
K 2

0

(6)

where the bulk modulus of the fluid K f (Sw) is computed using
Reuss average as

K f (Sw) =
(

(1 − Sw)

KCO2
+ Sw

Kw

)−1

(7)

with KCO2 and Kw being the bulk moduli of CO2 and
water, respectively, whereas the shear modulus of the satu-
rated rock, Gs(φ, Sw), is equal to the shear modulus of the
dry rock Gd(φ), according to Gassmann’s theory [4]. The
P- and S-wave velocities, VP and VS , are then computed as

VP =
√

Ks(φ, Sw) + 4/3Gs(φ, Sw)

ρ(φ, Sw)

VS =
√

Gs(φ, Sw)

ρ(φ, Sw)
(8)

where ρ(φ, Sw) is given by (4).
The resistivity R of the saturated rock can be calculated

using Archie’s law [4]

R = Rw

φm Sn
w

(9)

where Rw is the resistivity of water, m is the cementation
exponent, and n is the saturation exponent. These parameters
are assumed to be constant. Archie’s law is generally assumed
to be valid in sandstone. Other rock physics models such as
elastic inclusion models for elastic properties and electrical
models accounting for clay inner resistivity [4] could also be
applied.

The seismic response can be predicted by solving the poro-
elastic wave equation. However, approximated models are
also available. In this work, we adopt a convolutional model.
Given a sequence of rock formations, their seismogram s(θ)

can be computed, for any reflection angle θ , as a function

of the vectors of the P- and S-wave velocities and density,
along the vertical profile. For weak elastic contrasts and small
reflection angles, the seismic response s(θ) can be accurately
approximated as a convolution of the seismic wavelet w(θ) and
the P–P reflection coefficient series r(θ) that depend on the P-
and S-wave velocities VP and V S, and density ρ, according to
Shuey’s linearized approximation of Zoeppritz equations [52].
At a given travel time t , the corresponding seismic amplitude
is given by

s(t, θ) = w(t, θ) ∗ r(t, θ) =
∫

w(t, θ)r(t − u, θ)du (10)

where ∗ represents the convolution operator.
The CSEM electric field E and the magnetic field H can

be computed based on the electrical resistivity obtained from
Archie’s law. The relations linking electrical conductivity
σ = 1/R (i.e., the reciprocal of resistivity) to the curl of the
electric field E and curl of the magnetic field H are described
by Maxwell’s equations

∇ × E − iωμH = MS

∇ × H − σE = JS (11)

where ω is the angular frequency, μ is the magnetic per-
meability (i.e. the resistance to the magnetic field), and MS

and JS are the electric and magnetic sources, respectively.
Assuming an isotropic 2-D conductivity model along the
strike direction, Maxwell’s equations can be solved using
finite element methods in the frequency domain, as shown
in [25] and [53]. The electrical conductivity, in principle,
is complex and depends on the real electrical conductivity and
the dielectric permittivity; however, for low-frequency sources,
the conductivity is assumed to be equal to the real component.
The 2-D formulation is extended to 3-D applications by
applying Maxwell’s equations section by section, where each
section is processed independently.

In our approach, the reservoir properties, including porosity
and fluid saturations, are defined in the irregular stratigraphic
grid of the structural model and then interpolated on a regular
grid for the calculation of the seismic data and on an adaptive
triangular mesh for the calculation of the electromagnetic data.
The spatial interpolation is considered part of the forward
operator f in (1).

C. Inverse Method

Next, we introduce the inverse method. The inversion is
divided in two steps: first, we predict porosity from the base
seismic survey and, then, we predict CO2 saturation from time-
lapse seismic and electromagnetic data. The inverse method is
based on the Ensemble Smoother [40], in which an ensemble
of prior realizations is first generated and then updated using a
Bayesian updating step based on the Kalman filter equations.
We first discuss the prior model generation and then present
the updating approach.

1) Prior Ensemble Generation: Prior model realizations of
porosity and saturation can be generated using geostatisti-
cal simulations, such as Sequential Gaussian Simulations or
Probability Field Simulations algorithms; however, saturation
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distributions are generally non-stationary due to the effects
of gravity. Traditional algorithms might lead to unphysical
model realizations that do not preserve the physical order
of fluids or do not obey to hydrological constraints. In the
proposed approach, we generate prior realizations according
to two different approaches for porosity and saturations,
respectively. For the prediction of porosity from the base
seismic survey, we assume that the prior model of porosity
is a truncated Gaussian random field with locally variable
mean and known spatial covariance matrix. We then generate
Ne prior realizations using the fast Fourier transform moving
average (FFT-MA) method [54]. The FFT-MA generates a spa-
tially correlated realization by computing the inverse Fourier
transform of the product of the Fourier transform of a spatial
filter (associated with the spatial covariance function) and the
Fourier transform of a spatially uncorrelated realization of a
standard Gaussian random field [54]. The FFT-MA method
is extremely efficient to generate unconditional realizations;
however, any other geostatistical algorithm could be used. For
the prediction of CO2 saturation from time-lapse data, we first
generate Ne prior realizations of porosity and permeability,
using the FFT-MA method, and then, for each realization,
we run a fluid flow simulation and choose a saturation model
at a random time according to a uniform distribution in the
simulation time interval. It is possible to choose the saturation
realizations at the time at which the data are measured, with
the differences in the realizations being due to the initial
porosity and permeability values; however, the variability
of such ensemble is limited and the inversion might lead
to an underestimation of the posterior uncertainty. Instead,
the proposed approach generates a prior ensemble of saturation
models with a large variability. The fluid flow simulation
is conducted using MATLAB reservoir simulation toolbox
(MRST) [55], specifically the MRST-co2lab tool, to mimic
CO2 and water displacement during injection and migration.
We store the prior model realizations in the ensemble of
vectors {mprior

j } j=1,...,Ne .
Because volumetric fractions are bounded variables in the

interval [0,1], we first apply a logit transformation to the model
parameters to map porosity and saturations to the (unbounded)
set of real numbers, then apply the inversion in the transformed
space, and apply the inverse transformation to obtain the final
predictions in the porosity and saturation bounded domain.

2) Ensemble Updating: The prior realizations are then
updated using the Ensemble Smoother approach, where the
covariance matrices are approximated using the sample covari-
ance matrices estimated from the ensemble. The initial ensem-
ble includes Ne models m j for j = 1, . . . , Ne . The inversion
approach can be summarized as follows.

1) For each model in the ensemble, we apply the geophys-
ical functions in (4)–(11) to compute the corresponding
seismic and electromagnetic response and we obtain the
vector of the predicted data {dprior

j } j=1,...,Ne

dprior
j = f

(
mprior

j

) + e j (12)

where {e j } j=1,...,Ne represent the data errors.
2) For each model in the ensemble, we compute a stochas-

tic perturbation {d p j} j=1,...,Ne of the measured data d

as

d p j = d + �1/2
e z j (13)

where z j ∼ N(0, In) is a vector sampled from a n-
variate Gaussian distribution with 0 mean and covari-
ance matrix equal to the n × n identity matrix In , for
j = 1, . . . , Ne, and �1/2

e is the square root of the
covariance matrix of the measurement errors.

3) We then update the ensemble using the Ensemble
Smoother updating equation [40]

mpost
j = mprior

j + �
prior
m,d

(
�

prior
d,d + �e

)−1(
d p j − dprior

j

)

(14)

for j = 1, . . . , Ne and obtain the ensemble of posterior
models {mpost

j } j=1,...,Ne . In (14), the matrix �
prior
m,d is

the cross-covariance matrix of mprior and dprior and the
matrix �

prior
d,d is the covariance matrix of the data dprior .

In the ES-MDA [42], steps 1–3 are repeated to assim-
ilate the measured data multiple times and improve
the accuracy of the updated predictions, using inflation
factors for the covariance matrix of the data errors. In the
ensemble-based methods, it is also possible to update the
model variables and the data predictions simultaneously;
however, in the proposed implementation, we apply
the updating to the model variables only [56] and
compute the predicted data using the forward model.
A sensitivity analysis on the covariance matrix of the
error measurement �e is necessary. In our work, �e is
assumed to be diagonal, but especially with real time-
lapse geophysical data with imperfect repeatability, error
correlations should be introduced to model processing
errors in the data.

The inversion for porosity and time-dependent saturation
can be solved sequentially or jointly. If we assume that before
injection, there is only one fluid component (water) in the
aquifer, and the base seismic survey is not affected by the
fluid; therefore, the porosity model can be predicted from
the preinjection seismic survey using the inverse method in
(12)–(14), where the model vector m includes porosity and
the data vector d includes the base seismic survey [49]. Then,
fluid saturations are predicted from time-lapse geophysical
data using the same inverse method, where the model vector
m includes CO2 saturation and the data vector d includes the
difference in base and monitor seismic and electromagnetic
surveys.

Because of the large dimension of geophysical data,
the Ensemble Smoother approach is often not practical, since
it would require a large number of initial realizations to
obtain accurate predictions and a reliable quantification of
uncertainty. To overcome this problem, we propose to apply
a dimensionality reduction method to map the data in a
smaller dimensional space and perform the inversion using
the Ensemble Smoother in the reduced space [57]. The data
reduction can be obtained using traditional methods such
as principal component analysis or multidimensional scaling,
or using deep learning algorithms, for example, the deep
convolutional auto-encoder (DCAE). Deep learning methods
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Fig. 1. Schematic of the inversion methodology.

have been successfully applied to seismic inversion [58] and
[59]. In the proposed approach, we choose the DCAE approach
to compress the data and preserve the spatial correlation
structure [57]. The proposed method is schematically depicted
in Fig. 1.

III. APPLICATION

We apply the proposed approach to a carbon dioxide seques-
tration study based on the Johansen formation model, offshore
Norway. The Johansen formation is located below the Troll
hydrocarbon field where existing boreholes are available. The
data set has been presented in several publications including
[14] and [15]. The data show favorable geological features of
the storage unit and the overlying sealing, including pore vol-
ume, storage capacity, and pressure conditions. The formation
depths are between 2200 and 3200 m.

A. Synthetic Data Generation

The pre-injection stratigraphic model of the Johansen for-
mation was built based on seismic and well log data. A struc-
tural model including porosity and permeability spatial distri-
butions is available [15]. The original geo-cellular model is
discretized in 100 × 100 × 5 cells; however, in this study,
we consider a smaller sub-volume of size 40 × 40 × 5
cells centered around the injection well (Fig. 2). The model
includes a major fault interpreted from seismic data. The true
reservoir model of porosity and permeability shows relatively
high values in the top layers and lower values in the bottom
layers. The initial water saturation (before injection) is equal
to 1 everywhere. The fluid flow is simulated using MRST-
co2lab with an injection period of 100 years and a constant
injection rate of 1.4 × 104 m3/day and migration time of
400 years. Synthetic seismic and CSEM data are computed
before injection (base survey) based on the model in Fig. 2
and 10 years after stopping CO2 injection (monitor survey)

Fig. 2. True reservoir model of (a) permeability and (b) porosity of the
deep saline aquifer in the Johansen formation. The coordinates are in the
UTM system. The y-axis corresponds to the Northing direction, and the
x-axis corresponds to the Easting direction. Black line: Location of the injector
well.

based on the initial porosity model and the fluid saturations
obtained from the simulator.

The synthetic time-lapse seismic data and CSEM data
are generated using the geophysical forward models (4)–(11)
and are shown in Figs. 3 and 4. The CSEM amplitudes
are computed in the log10 domain [60] and the differences
represent the variations in the logarithm of the amplitudes.
Porosity is assumed to be constant in time; therefore, the dif-
ferences in the geophysical data are due to the changes in
saturation. We assume that the effect of pressure changes is
negligible compared with the effect of saturation changes.
The signal-to-noise ratio of the data is assumed to be 10.
The data errors are assumed to be uncorrelated in time and
space. Therefore, the covariance matrix of the measurements is
diagonal.

B. Inversion Results

The inversion methodology is presented in two parts: first,
we compute the porosity model based on the base seismic
survey; then, we predict the CO2 saturation based on the time-
lapse seismic and CSEM data.

First, we estimate the porosity model from the base seismic
survey using the Ensemble Smoother approach. We generate
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Fig. 3. Time-lapse seismic surveys. (a) Base seismic survey acquired before
injection. (b) Monitor seismic survey. (c) Difference between base and monitor
seismic data.

the initial ensemble of 100 prior realizations of porosity using
the FFT-MA method. The models are generated by adding a
locally variable prior mean to preserve the non-stationary trend
of porosity in the vertical direction and the spatial anisotropic
behavior. The mean of the 100 prior realizations of porosity
in the top and bottom layers is shown in Fig. 5. Their seismic
responses are generated using the rock physics model and
the convolutional seismic model. Due to the large dimension
of the data space, we re-parameterize the seismic data using
sparse latent features by applying the DCAE and we perform
inversion in the lower dimensional space. The posterior mean
of the updated porosity models is shown in Fig. 5.

Then, we estimate the CO2 saturation model in year 110,
from monitor seismic and CSEM data. The 100 realizations in
the initial ensemble of CO2 saturation models are generated
using dynamic simulations of CO2 injection and geostatistical
simulations of rock properties (permeability and porosity).
For each of the geostatistical simulations of porosity and
permeability, we simulate the fluid flow after injection using
MRST-co2lab and select a saturation realization at a random
time according to a uniform distribution on the simulation time
interval. Using this approach for the generation of the initial

Fig. 4. Time-lapse CSEM surveys acquired before and after injection and
their difference. (Left) Log-amplitude data. (Right) Phase. Each 2-D section
is represented in a different color for clarity of illustration.

ensemble, we preserve the hydrological realism of the satura-
tion models in the prior and impose physical constraints that
cannot be guaranteed by traditional geostatistical simulations.
The mean of the CO2 saturation prior realizations, in the top
and bottom layers, is shown in Fig. 6.

The predicted seismic and CSEM responses of the prior
realizations in year 110 are obtained by applying the seismic
and electromagnetic forward models and using the predicted
porosity model obtained in the first step of the inversion.
A logit transformation is applied to the saturation models
to perform inversion in the real number domain rather than
the bounded saturation domain. A dimensionality reduction
is applied to data before inversion. We then compute the
posterior mean of the CO2 saturation distribution conditioned
on the monitor seismic and CSEM data, using the Ensemble
Smoother. The posterior mean of the CO2 saturation model
is shown in Figs. 6 (map view) and 7 (vertical view of
two orthogonal sections). The predicted model shows a good
agreement with the true model. The standard deviation maps
of porosity and CO2 saturations are shown in Figs. 8 and 9,
respectively, which show a reduction in the posterior standard
deviation in both properties compared with the prior standard
deviation of the initial ensemble.

A 3-D view of the CO2 plume in year 110 is shown
in Fig. 10. The prediction obtained through the geophysical
inverse problem accurately matches the true model. To repre-
sent the posterior uncertainty in 3-D, we show the 0.90 confi-
dence interval of the CO2 saturation predictions. Fig. 11 shows
the 5th and 95th percentile of the CO2 saturation, that is,
the lower and upper bounds of the 0.90 confidence inter-
val. Overall, the pointwise confidence intervals are relatively
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Fig. 5. Porosity model of the top reservoir layer (Top) and the bottom reservoir layer (Bottom). (From Left to Right) True model; prior mean; posterior
mean predicted from seismic data.

Fig. 6. CO2 saturation model (map view) in year 110 of the top reservoir layer (Top) and the bottom reservoir layer (Bottom). (From Left to Right) True
model; prior mean; posterior mean predicted from time-lapse geophysical data.

narrow, except close to the location near the CO2 plume
where the uncertainty is generally higher. The width of the
confidence interval generally depends on the quality of the
measured geophysical data and the approximations of the
geophysical models. The correlation between the inversion
prediction and the true saturation model is 0.96 in the entire
model and 0.88 if we only consider the locations where
saturation changes during the injection, which shows a high
prediction accuracy. To evaluate uncertainty quantification,
we computed the percentage of samples of true model within
the 0.90 confidence interval, also known as the coverage ratio
of the confidence interval, and estimated a value of 83%, which

shows that uncertainty is slightly underestimated, possibly
due to model linearization, limited ensemble size, and data
reduction.

The proposed inversion results were compared with well-
established inverse theory methods such as Occam’s inversion
and Bayesian linearized inversion which show a higher accu-
racy and a better reproduction of the spatial correlation struc-
ture of CO2 saturation maps. The studied model is relatively
small (8,000 grid cells), and therefore, a limited number of
ensemble realizations can be used for stochastic inversion. For
a larger model, it might be necessary to increase the number
of model realizations in the initial ensemble to avoid the
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Fig. 7. CO2 saturation model (section view) in year 110 of two orthogonal sections. (a) True model (X-slice). (b) True model (Y-slice). (c) Posterior mean
(X-slice). (b) Posterior mean (Y-slice). The 3-D locations of the X- and Y-slices are shown in Fig. 2(a).

Fig. 8. Uncertainty quantification of the porosity model in the top and bottom layers. (Left) Prior standard deviation maps. (Right) Posterior standard deviation
maps.

ensemble collapse. The results generally depend on the quality
of the data, in terms of resolution and signal-to-noise ratio.
In our application, we assumed a signal-to-noise ratio of 10;
however, real data might show lower values and posterior
uncertainty might be larger. The dimensionality reduction is
generally necessary for 3-D data and the dimension of the

reduced data space can be determined from the magnitude of
the eigenvalues of the singular value decomposition of the data
vector [49].

The impact of each data set, namely, seismic and CSEM sur-
veys, has been investigated by performing the same inversion
using only one of the two data sources. Using only seismic
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Fig. 9. Uncertainty quantification of the CO2 saturation model in the top and bottom layers. (Left) Prior standard deviation maps. (Right) Posterior standard
deviation maps.

Fig. 10. CO2 saturation model (3-D view) in year 110. (a) True model.
(b) Posterior mean predicted from time-lapse geophysical data.

data, inversion can accurately predict the location of the CO2

plume but the results are less accurate in partially saturated
rocks. This is due to the limited sensitivity of velocity to partial
saturations and the large uncertainty of density estimation from

Fig. 11. Confidence interval 0.90 for the CO2 saturation model in year 110.
(a) 5th percentile. (b) 95th percentile.

seismic data. The correlation between predictions and true
saturation model decreases to 0.79. Using only CSEM data,
the accuracy of the predictions is strongly dependent on the
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frequency of the data, and the posterior standard deviation is
overall larger than in the seismic case, due to data resolution.
The correlation between predictions and true saturation model
decreases to 0.77. Porosity and fluid saturations could be
jointly inverted from base and monitor surveys; however,
preliminary tests showed that the inversion results overestimate
the correlation of the model variables and posterior uncertainty
is underestimated.

The inversion code is written in MATLAB, whereas for
forward models, we adopted different open source pack-
ages including the Fortran code MARE2DEM [53] and the
MATLAB code MRST [55]. The computational cost for the
inversion is approximately 3 h, with no parallelization, for the
proposed model including 16 000 model variables (porosity
and CO2 saturation values at each reservoir location) and
14 800 measurements (base and monitor seismic and CSEM
data) with 74% of the computational time spent on the forward
geophysical model.

IV. CONCLUSION

We presented a stochastic inversion for the prediction of
rock and fluid properties, namely, porosity and time-dependent
CO2 saturation values, from multiple source geophysical data,
including seismic and electromagnetic surveys. The proposed
Ensemble Smoother approach updates an ensemble of geosta-
tically generated initial realizations in a Bayesian setting. The
method was validated on synthetic time-lapse geophysical data
generated for the Johansen formation model. The inversion
results show high prediction accuracy and preserve a realistic
spatial correlation structure for porosity and CO2 saturation.
This result is achieved by integrating geostatistical simulations
to generate the initial porosity models and fluid flow simula-
tions to generate the initial fluid saturation models. The initial
realizations are updated conditioned on the mismatch between
data predictions and measurements; therefore, the accuracy
of the inversion depends on the signal-to-noise ratio and
resolution of the data. The posterior standard deviation and
confidence intervals provide a quantification of the uncertainty
in predictions. The uncertainty in the proposed case study is
relatively small due to the use of synthetic data; however,
in real data studies, we can expect the saturation uncertainty
to increase depending on the quality of the data. The proposed
methodology was applied to a deep saline aquifer but could be
extended to CO2 sequestration studies in depleted hydrocarbon
reservoirs as well as CO2 injection and storage as part of EOR
applications.
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