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ABSTRACT

Among the large variety of mathematical and computational
methods for estimating reservoir properties such as facies and
petrophysical variables from geophysical data, deep machine-
learning algorithms have gained significant popularity for their
ability to obtain accurate solutions for geophysical inverse prob-
lems in which the physical models are partially unknown. Sol-
utions of classification and inversion problems are generally not
unique, and uncertainty quantification studies are required to
quantify the uncertainty in the model predictions and determine
the precision of the results. Probabilistic methods, such as
Monte Carlo approaches, provide a reliable approach for captur-
ing the variability of the set of possible models that match the
measured data. Here, we focused on the classification of facies
from seismic data and benchmarked the performance of three

different algorithms: recurrent neural network, Monte Carlo
acceptance/rejection sampling, and Markov chain Monte Carlo.
We tested and validated these approaches at the well locations
by comparing classification predictions to the reference facies
profile. The accuracy of the classification results is defined
as the mismatch between the predictions and the log facies pro-
file. Our study found that when the training data set of the neural
network is large enough and the prior information about the
transition probabilities of the facies in the Monte Carlo approach
is not informative, machine-learning methods lead to more ac-
curate solutions; however, the uncertainty of the solution might
be underestimated. When some prior knowledge of the facies
model is available, for example, from nearby wells, Monte Carlo
methods provide solutions with similar accuracy to the neural
network and allow a more robust quantification of the uncer-
tainty, of the solution.

INTRODUCTION

Facies prediction from geophysical data, such as well logs or
seismic surveys, has been approached using several mathematical
methods. Here, we assume that a facies definition is provided by
geologists based on sedimentology, stratigraphy, and core analysis
(Boggs, 2001), and the aim of the application of a classification
method is to classify facies from well-log data and seismic data
(or inverted seismic properties) within the reservoir model. Standard
classification methods classify facies independently at each loca-
tion. In other words, the facies value predicted at one location is
independent of the facies values estimated at adjacent locations.
The continuity of the predicted model only depends on the continu-
ity of the measured data. However, facies models must be spatially
correlated to mimic the stratigraphy and the depositional processes

(Lindberg and Grana, 2015). Similarly, the fluid effect within the
facies is controlled by the gravity effect. Spatially correlated models
must be imposed to preserve the geologic ordering in facies sequen-
ces (Lindberg and Grana, 2015). We compare probabilistic methods
with prior spatial correlation models with deep machine-learning
methods with spatially correlated training data sets.
We first review the main works in the field of facies classification

from seismic data. The most commonmethods applied for facies clas-
sification are pattern recognition and clustering algorithms (Hastie
et al., 2002; Martinez and Martinez, 2007). Within these methods, we
classify a set of measurements in several clusters that represent differ-
ent facies. The goal is to classify the measurements such that the sim-
ilarity between two measurements within each facies is higher than
the similarity between two measurements from two different facies.
The set of measurements generally consists of elastic and/or petro-
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physical properties, as well as computed properties estimated from the
data. Examples of these methods include, among others, Bayesian
classification as in Doyen (2007), statistical facies classifications
based on maximum-likelihood criteria as in Da Veiga and Le Ravalec
(2012), Monte Carlo classification methods as in Grana et al. (2012),
support vector machine algorithms as in Wang et al. (2014), and dis-
criminant analysis approaches as in Negahdari et al. (2014). Markov
chain Monte Carlo (MCMC) methods have also been proposed to
integrate spatial statistics models, such as Markov models in the in-
version (Lindberg and Grana, 2015). Several comparisons between
classification methods have also been proposed. Other classification

methods such as fuzzy logic, k-nearest neighbor, and artificial neural
network have been proposed and compared (Dubois et al., 2007).
Wong et al. (1995) compare the performance of neural networks and
discriminant analysis, whereas Li and Anderson-Sprecher (2006)
compare discriminant analysis and Bayesian classification. Such
methods have been applied in different depositional environments
such as the marine turbiditic system (Chen and Hiscott, 1999) or the
Marcellus gas shale reservoir (Wang and Carr, 2012). Some of these
methods have been initially developed for well-log classification and
have been extended to inverted seismic properties or related seismic
attributes (Mukerji et al., 2001; Avseth et al., 2005; Doyen, 2007).
The development of machine-learning methods, especially those

based on deep learning techniques, constitutes a major advancement
in facies classification studies. The applications of machine learning
in geophysics also include seismic processing and inversion studies.
Preliminary works in the field include those by Strecker and Uden
(2002), Caers and Ma (2002), West et al. (2002), Saggaf et al.
(2003), Coléou et al. (2003), Tartakovsky and Wohlberg (2004),
and de Matos et al. (2006). Recent developments include, among
others, the findings of Roy et al. (2013), Guillen et al. (2015), Zhao
et al. (2015), Hall (2016), Zhang and Zhan (2017), Bestagini et al.
(2017), Huang et al. (2017), Hall and Hall (2017), Maniar et al.
(2018), Wu et al. (2018), Li (2018), and Jin et al. (2018). Uncertainty
assessment in machine-learning predictions using recurrent neural
networks have been studied in recent publications especially in com-
puter science and engineering applications (Lin et al., 2002; Park et al.,
2008; Cong and Liang, 2009; Graf et al., 2010), but applications to
facies classification and geologic modeling is still ongoing research.
Despite recent advances, some challenges in facies classification

remain open. In particular, the assessment of the uncertainty of the
estimated model is challenging due to the nonuniqueness of the
solution of the classification and inversion problem. Furthermore,
preserving the geologic meaning of the spatial distribution of the
facies, such as the vertical transitions mimicking the geologic
deposition, is difficult due to the lack of explicit spatial statistics
models. Examples of statistical models include variogram models
(Doyen, 2007) and the Markov chain (Lindberg and Grana, 2015).
Facies classification with underlying spatial statistics models leads
to larger computational costs compared to standard pointwise clas-
sification and also requires assumptions on the parameters of the
statistical models, such as the variogram length or the prior transi-
tion probabilities. The assessment of the uncertainty under these

statistical assumptions then requires a large num-
ber of statistical realizations. Deep machine-
learning methods aim to “learn” the intrinsic spa-
tial relations within the facies distribution from a
training data set, either a set of measurements or
a data set predicted with physical models.
Here, we propose a comparison of facies clas-

sification algorithms using machine-learning ap-
proaches, based on a long short-term recurrent
neural network (Mikolov et al., 2010), and Monte
Carlo methods, including acceptance-rejection
sampling and MCMC methods (Gilks et al.,
1995). We evaluate the performance of the meth-
ods in terms of computational efficiency and the
quality of the results based on accuracy and pre-
cision. Accuracy is a measure of statistical bias be-
tween measured data and prediction. Precision is a

Figure 1. Recurrent neural network unit.

Figure 2. Long short-term memory unit.

Figure 3. Schematic workflow of the proposed RNN model for facies classification
from seismic data.
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measure of statistical variability among the predictions. High accu-
racy means that the prediction is close to the true value, in our case,
the reference facies profile, whereas high precision means that the
variability between multiple predictions is small. In some cases, pre-
dictions might show high accuracy but low precision (i.e., the mode
of the predictions is close to the true value, but the variability is large)
or low accuracy and high precision (i.e., the variability is small, but
the predictions are far from the true value). We point out that high
precision might also mean that the uncertainty in the predictions is
underestimated and a potential solution might not be captured by the
algorithms, which may occur when the predictor after training is over-
fitted. The methods are tested and validated using a benchmark data
set. We show that machine learning and Monte
Carlo methods provide accurate and geologically
consistent results. In terms of accuracy, machine-
learning algorithm provides better results if the
training data set is large enough. Monte Carlo
methods based on Markov models provide accu-
rate results if prior information is available, such
as the transition probabilities of the facies. In terms
of uncertainty quantification, machine-learning
methods can underestimate the variability of the
solution if the training data set is not large enough.

METHODOLOGY

Recurrent neural networks

Recurrent neural networks (RNNs) are a spe-
cialized class of deep neural networks for process-
ing sequential data such as audio signal and text
data. Unlike feed-forward neural networks for
example, the multiple-layer perceptron and convo-
lutional neural network (CNN), RNNs allow in-
formation cycles through a feedback loop that
takes into consideration the current input and also
what was learned from previous time steps. Such
feedback loops enable them to capture long tem-
poral dependencies in sequential data and allow an
exhaustive analysis of time series data such as
seismic reflection data. Here, we propose an RNN-based method
for facies prediction from seismic data.
RNNs use a hidden state serving as memory to allow information

to be passed between time steps (Figure 1). We denote the input and
output sequence with length T using the variables x ¼ ½x1; x2;
: : : ; xt; : : : ; xT � and y ¼ ½y1; y2; : : : ; yt; : : : ; yT �, respectively. At
the specific time step t, the hidden state and output of RNN are

st ¼ gðWssst−1 þWxsxt þ bsÞ; (1)

yt ¼ gðWsyst þ byÞ; (2)

where st is the hidden state; Wxs, Wss, and Wsy are the trainable
weights for the input-to-hidden, hidden-to-hidden, and hidden-to-out-
put connections, respectively; bs and by are the bias vectors for hid-
den state and output, respectively; and g is the activation function.
RNNs are theoretically capable of learning long-term dependen-

cies from the hidden states, but in practical applications, they might
fail when training with long sequences due to numerical issues with

the gradient calculation (Pascanu et al., 2013). To solve this limi-
tation, improved RNNs using gated units such as long short-term
memory (LSTM) (Sak et al., 2014) and gated recurrent units

Table 1. True transition matrix.

Facies 1 Facies 2 Facies 3

Facies 1 0.81 0.19 0

Facies 2 0.31 0.23 0.46

Facies 3 0.03 0.12 0.85

Figure 4. Synthetic well-log data: (a) facies classification, (b) porosity, (c) P-imped-
ance, and (d) seismic amplitudes.

Table 2. Simulated transition matrices (realizations 1, 5000,
and 10,000).

Facies 1 Facies 2 Facies 3

Realization 1

Facies 1 0.60 0.16 0.24

Facies 2 0.41 0.29 0.30

Facies 3 0.53 0.11 0.36

Realization 5000

Facies 1 0.36 0.17 0.47

Facies 2 0.08 0.26 0.66

Facies 3 0.18 0.28 0.54

Realization 10000

Facies 1 0.14 0.84 0.02

Facies 2 0.21 0.59 0.20

Facies 3 0.16 0.29 0.55
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(Chung et al., 2014, 2015) have been developed with satisfactory
results in the field of speech recognition. Here, we adopt LSTM
because it is suitable for data sequences.
LSTM introduces a mechanism known as cell states with the up-

date gate, forget gate, and output gate (Figure 2). The value of the
cell state at each time step ðctÞ is determined by the candidate value
at the current time step ð ~ctÞ and the value at the previous time step
ðct−1Þ with the update and forget gate , and the activation output is
then regulated by the output gate :

~ct ¼ gðWcsst−1 þWcxxt þ bcÞ; (3)

Γu ¼ σðWusst−1 þWuxxt þ buÞ; (4)

Γu ¼ σðWusst−1 þWuxxt þ buÞ; (5)

Γf ¼ σðWfsst−1 þWfxxt þ bfÞ; (6)

Γf ¼ σðWfsst−1 þWfxxt þ bfÞ; (7)

st ¼ Γoct; (8)

Figure 5. Training data set: subset of 100 simulations (extracted from the full data set by selecting 1 realization of every 100) of (a) facies
realizations and (b) the corresponding seismic response.

Figure 6. Training and test loss: (a) case ML1, (b) case ML2, and (c) case ML3.
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where W and b are the trainable weight matrices and bias vectors,
and σ is the sigmoid function with output between 0 and 1.
The proposed model consists of an LSTM layer, a time distrib-

uted layer, and a fully connected layer with SoftMax as the activa-
tion function (Figure 3). The SoftMax function turns logits into
probabilities that sum to one and outputs a vector that represents
the probability distributions of a list of potential outcomes (Jang
et al., 2016). The LSTM layer is used to capture the long temporal
dependencies in seismic traces. With the time distributed wrapper,
we can apply the fully connected layer to every temporal slice of an
input independently rather than being entangled with each other.

Monte Carlo methods

Monte Carlo methods include a broad set of algorithms that aim
to numerically approximate a probability density function using re-
peated random sampling. In inverse theory, Monte Carlo methods
are generally used to approximate the posterior probability of the
model variables conditioned by the data by iteratively sampling
from a proposal distribution and evaluating the likelihood of observ-
ing the data given the drawn model values (Mosegaard and Taran-
tola, 1995; Sen and Stoffa, 1996; Mosegaard, 1998; Sambridge and
Mosegaard, 2002). Here, we adopt two different approaches: Monte
Carlo acceptance/rejection sampling and an MCMC algorithm.
The Monte Carlo acceptance/rejection sampling consists of re-

peated random sampling from a prior distribution and accepting
or rejecting the drawn model by evaluating the similarity between
the model predictions and observed data. In the proposed imple-
mentation, the sampling of the vertical profile of the facies is based
on stationary first-order Markov chains (Krumbein and Dacey,
1969; Elfeki and Dekking, 2001; Lindberg and Grana, 2015;
Fjeldstad and Omre, 2017). A Markov chain is
a stochastic process in which the probability dis-
tribution of the next state of the process is con-
ditioned by the previous states of the process,
rather than the entire sequence of previous states.
The order of the Markov chain indicates the
number of previous states in the conditional dis-
tribution. Categorical Markov chains represent a
special case defined in a discrete-valued state
space; hence, each state belongs to a finite num-
ber of n classes. In the facies simulation, the state
is the facies value at a given location; therefore,
at each location, the probability of a given facies
depends only on the facies at the previous loca-
tion. The probabilities of transitioning from a
given state to another one, that is, the transition
probabilities, are generally represented in a square
matrix, that is, the transition matrix, where the
rows represent the previous states and the columns
represent the current states. In the facies simula-
tion, the element ði; jÞ of the transition matrix rep-
resents the probability of a transition from facies i
located above the interface to facies j located be-
low. The elements of the transition matrix are
commonly assumed to be known because they
can be estimated from available data (i.e., facies
profiles) and most of the sampling algorithms as-
sume that they are constant in the entire reservoir.
However, these parameters could vary in the res-

ervoir and the estimates at the well locations might be biased by
subjective data interpretations. Hence, we propose a Monte Carlo al-
gorithm based on two sequential sampling components: (1) We sam-
ple the transition matrix from a uniform distribution of facies
proportions, and (2) we sample a facies sequence assuming the tran-
sition matrix sampled in the first step. The description of the sampling
algorithm is provided in Appendix A. Alternatively, we propose an
MCMC method based on a Metropolis algorithm. In this approach,

Table 3. Predicted transition matrices (ML1, ML2, and
ML3).

Facies 1 Facies 2 Facies 3

ML1

Facies 1 0.81 0.15 0.04

Facies 2 0.12 0.76 0.12

Facies 3 0.06 0 0.94

ML2

Facies 1 0.84 0.08 0.08

Facies 2 0.05 0.90 0.05

Facies 3 0.06 0 0.94

ML3

Facies 1 0.90 0 0.10

Facies 2 0.05 0.96 0.04

Facies 3 0.06 0 0.94

Figure 7. Inversion results using RNN with the full training data set (case ML1):
(a) reference facies classification, (b) predicted facies, (c) predicted facies probability,
and (d) seismic response (the predicted data in black versus the reference data in red).
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we assume a given transition matrix, then, at each
iteration, we sample a facies realization from the
given transition matrix and compute the likelihood
of the predicted data given the observed data
based on the correlation coefficient between the
two seismic traces. We then propose a new reali-
zation by sampling from a proposal distribution
and iterate until convergence. The details of the
algorithms are given in Appendix A.

APPLICATION

The methods presented in the “Methodology”
section are tested on a 1D synthetic data set. The
data set includes a reference facies model with
N ¼ 80 samples and a seismogram correspond-
ing to a zero-offset trace (Figure 4). The facies
model represents three different rock types (e.g.,
stiff-sand, soft-sand, and shale). For simplicity,
we refer to these as facies 1 (blue), facies 2
(green), and facies 3 (yellow). The true transition
matrix is estimated from the data by counting the
number of transitions and normalizing by the to-
tal number of transitions (N − 1), and it is shown
in Table 1. The true seismogram is generated us-
ing a convolutional model with a known Ricker
wavelet, with a dominant frequency of 30 Hz,
and the series of reflection coefficients. To com-
pute the reflection coefficients, we first sampled
a porosity value from a univariate Gaussian mix-
ture model with three facies-dependent compo-
nents and computed the P-impedance and the
corresponding reflectivity using a linearized rock
physics model. The Gaussian distributions of
porosity in each facies are assumed to be very
narrow to avoid overlaps of the values between
the different facies: Facies 1 is a low-porosity
rock (between 0 and 0.1), Facies 2 is a mid-
porosity rock (from 0.1 to 0.2), and Facies 3
is a high-porosity rock (from 0.2 to 0.3). Figure 4
shows the facies profile and the corresponding
porosity, impedances, and seismic amplitudes
plots.
We first apply the RNN method. We build a

training data set of s ¼ 10;000 realizations of fa-
cies using the abovementioned sampling method:
We sample s transition matrices from independent
uniform distributions with the constraints that the
sum of each row is equal to 1, and we generate
one realization for each transition matrix. Table 2
shows three different examples of transition
matrices, corresponding to the realizations 1 (with
prior proportions [0.55, 0.17, 0.28]), 5000 (with
proportions [0.19, 0.25, 0.56]), and 10,000 (with
proportions [0.18, 0.56, 0.26]). Figure 5 shows a
subset of 100 realizations extracted from the full
data set by selecting one realization from every
100. As discussed in the “Methodology” section,
in each facies, we sample a porosity value, com-
pute the P-impedance and zero-offset reflectivity,

Figure 8. Inversion results (100 runs) using RNN with subsets of the full training data
set (case ML2): (a) reference facies classification and (b) 100 profiles of the predicted
facies.

Figure 9. Inversion results (100 runs) using RNN with subsets of the full training data set
(case ML2): (a) reference facies classification, (b) predicted facies, (c) predicted facies
probability, and (d) seismic response (the predicted data in black versus the reference data
in red).
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and estimate the corresponding seismograms using a convolutional
model. The 100 seismograms are also shown in Figure 5. The so-
obtained facies profiles and seismic traces constitute the training data
set of the neural network.
We then apply the RNN method to the reference seismogram in

Figure 4, according to three different cases: ML1, we use the entire
training data set of 10;000 realizations to estimate the most-likely
facies profile; ML2, we run the algorithm 100 times using 100 sub-
sets of 1000 realizations randomly selected in the full training data
set to estimate 100 most-likely facies profiles; and ML3, we use the
probability distributions used to generate the full probability distri-
butions (rather than the realizations) and estimate the most likely
facies. All three cases use the same RNN model with only one
LSTM layer of 50 units. The optimizer adopted
is the RMSprop (Tieleman and Hinton, 2012)
with a learning rate of 0.001 and a moving aver-
age parameter of 0.9. In each case, we randomly
split the data set into two subsets: 90% as the
training set and 10% as the validation set. The
training and test loss of the three cases are shown
in Figure 6. To minimize the probability of over-
fitting, we chose the models around epoch 30 as
the ideal model for prediction.
The results of case ML1 are shown in Figure 7.

The predicted facies profile matches the refer-
ence facies accurately well, except for the top
layer where we observe a mismatch due to the
proximity of the top boundary where there are no
data above the interface. Some of the thin layers
in the lower interval are also not predicted due to
the limited resolution of the data. The algorithm
also returns the probability of the facies and the
predicted response. The results show a good
agreement with the reference model and data in
terms of the mismatch between predictions and
measurements. The transition matrix estimated
from the predicted data is shown in Table 3: The
rows corresponding to facies 1 and 3 are close to
the true ones, whereas the transition from facies 2
to facies 2 is overestimated. Indeed, the predicted
realization shows thicker layers of facies 2 than
the true facies profiles with sub-seismic resolu-
tion layers.
We then randomly select 100 subsets of 1000

facies realizations and the corresponding seismograms from the
training data set and run the same algorithms 100 times (case
ML2). Each run assumes a training data set of 1000 samples, which
is more realistic than the large training data set used in case ML1.
The results of case ML2, that is, the set of 100 most likely facies,
one per run, is shown in Figure 8. The mode of the predicted real-
izations is shown in Figure 9 together with the predicted probability
and the model response. All runs converge to a similar solution that
resembles the most likely model obtained in case ML1 (Figure 7).
This suggests that a smaller training data set (1000 realizations in-
stead of 10,000) might be enough to retrieve accurate results with a
smaller computational cost associated with the training of the RNN.
However, the predicted probabilities show values closer to the bounds
of the interval, 0 or 1, and are less smooth than the case ML2, which
means that the uncertainty in the prediction is underestimated com-

pared to case ML1 with the full training data set. The number of runs
does not affect the results because all of the realizations converge
to similar solutions. Furthermore, the estimated transition matrix
(Table 3) is less accurate due to the overestimation of the probabilities
on the diagonal.
Finally, we run the RNN method using the facies probabilities as

input rather than the facies realizations using the SoftMax function
to convert the facies values into probabilities. The results are shown
in Figure 10 and Table 3. Among the three cases using RNNs, these
results are the lowest in terms of accuracy and precision. Indeed,
the number of samples predicted in the correct facies decreases
(Figure 10) the probabilities on the diagonal of the transition matrix
increase and overestimate the true ones (Table 3). In this example,

Figure 10. Inversion results using RNN using facies probability distributions (case
ML3): (a) reference facies classification, (b) predicted facies, (c) predicted facies prob-
ability, and (d) seismic response (the predicted data in black versus the reference data in
red).

Table 4. Predicted transition matrices (MC and MCMC).

Facies 1 Facies 2 Facies 3

MC

Facies 1 0.71 0.23 0.06

Facies 2 0.44 0.28 0.28

Facies 3 0.08 0.15 0.77

MCMC

Facies 1 0.64 0.20 0.16

Facies 2 0.19 0.57 0.24

Facies 3 0.15 0.15 0.70
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the RNN method works better with categorical
variables rather than continuous properties.
We then apply Monte Carlo methods and com-

pare the results. We first apply the acceptance/
rejection sampling. We generate a set of facies
realizations based on first-order Markov chains
with a randomly generated transition matrix and
compute the seismic response according to the
same approach used to generate the training data
set. To guarantee that the facies profile is represen-
tative of the transition matrix, we generate profiles
with 500 samples (i.e., more than six times longer
than the actual data). After generating the seismo-
gram corresponding to the seismic response, we
then define a moving window of the size of the
wavelet and select the interval in the proposed
seismic trace with the highest correlation coeffi-
cient with the measured data. If the correlation
coefficient is higher than 0.9, we accept the pro-
posed facies profile; otherwise, we reject it. We
can also rank all of the realizations based on their
correlation. In Figure 11, we show the 100
best realizations with a correlation coefficient be-
tween 0.92 and 0.95. Higher correlations can be
achieved using a larger number of initial realiza-
tions: 100,000 realizations to achieve correlations
greater than 0.95 and 1,000,000 realizations to
achieve correlations greater than 0.96. We com-
pute the mode of the accepted realizations and dis-
play the so-obtained profile in Figure 12. Different
from RNN methods, thin layers are predicted by
this approach, but the locations of the thin layers
are sometimes misclassified. Facies profiles with
thin layers interbedded in thick layers generally
produce a seismic response similar to profiles with
thick homogeneous layers, when the interbedded
layers are below the seismic resolution. However,
both models are solutions of the inverse problem,
and this variety of solution is captured by Monte
Carlo acceptance/rejection sampling. The proba-
bilities show the larger uncertainty in the Monte
Carlo solution compared to the RNN method; that
is, the predicted probabilities are not close to the
bounds of the interval [0,1]. The transition matrix
estimated using our proposed approach is close to
the true value. In particular, despite the misclassi-
fication of the positions of the facies 2 layers, the
probability of transitioning in facies 2 is more ac-
curate than the previous cases. Table 4 shows the
transition probability of the realization with the
highest correlation with measured seismic.
We finally run the MCMC methods with the

prior transition matrix equal to the transition matri-
ces of the best realization obtained in the Monte
Carlo acceptance/rejection sampling. The proposed
distribution is based on equations A-1 and A-2. In
Figure 13, we show the most likely model obtained
from the MCMC samples. The acceptance rate of
the algorithm is relatively low, approximately 0.09,

Figure 11. Inversion results using Monte Carlo acceptance/rejection sampling with
10,000 simulations (case MC): (a) reference facies classification and (b) 100 profiles
of the predicted facies.

Figure 12. Inversion results using Monte Carlo acceptance/rejection sampling with
10,000 simulations (case MC): (a) reference facies classification, (b) predicted facies,
(c) predicted facies probability, and (d) seismic response (the predicted data in black
versus the reference data in red).
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probably due to the constraints included in equations A-1 and A-2, to
preserve the spatial feature of the prior model. Table 4 shows the
posterior transition matrix. Overall, the results of MCMC are com-
parable to the Monte Carlo approach, but to capture the uncertainty in
the transition matrix, it is necessary to run several independent chains.
The contingency matrices for the different cases are shown in Table 5.
A contingency matrix is a table that quantifies the accuracy of a clas-
sification method on a set of test data for which the true values are
known, by counting the number of samples belonging to a given
group classified in each of the possible groups. The perfect classifi-
cations are represented as “target” in Table 5. The contingency ma-
trices support the above-discussed results; however, we point out that
it only provides statistics about the pointwise mismatch and does not
account for the spatial distribution of the errors. In other words, the
misclassification rates in the matrix do not provide information about
the correct estimation of spatial patterns such as thickness and inter-
bedded layers.

DISCUSSION

Table 6 shows the comparison of the computational costs (CPU:
Intel Core i5-4570 @ 3.20 GHz; RAM: 16 GB) of the different
methods applied in this study. The cost of the RNN method with
the full training data set of 10,000 realizations is approximately 4 h.
As observed in the “Application” section, for an accurate solution, a
smaller training data set than the one adopted in this study could be
used. Indeed, all 100 runs in case ML2 use a training data set of
1000 realizations and converge to similar solutions, close to the true
model. However, for a better interpretation of the uncertainty and to
avoid overfitting, a large data set is suggested, because it might in-
clude a broader set of geologic features that might
be observable in the field. The cost of the MC
method with a small data set is a few minutes;
in this case, uncertainty could be captured, but
the most likely model might be inaccurate and
the correlation between measured data and predic-
tions might not be optimal. The cost of the MC
method increases linearly with the number of sim-
ulations. To obtain more accurate and precise sol-
utions, we tested several simulations between 104

and 106; however, 1,000,000 realizations for a
simple 1D example still require several hours.
The MCMC method with one chain provides a
good compromise in terms of accuracy and com-
putational cost; however, testing several transition
matrices would require several runs with different
chains, increasing the computational cost of this
approach.
The choice of some initial parameters might

affect the results. In theory, Monte Carlo accep-
tance/rejection sampling provides the most accu-
rate and precise result, but it might require an
unfeasibly large number of simulations. The
trade-off between accuracy/precision and compu-
tational cost might impact the conclusions of the
study. The choice of evaluation criteria is also
critical: Some methods provide less accurate sol-
utions but with more realistic geologic features
(e.g., transitions from thin layers to thick layers),
some others provide the best solution in the least-

Table 5. Contingency matrix for all the inversion cases.

Predicted
Facies 1

Predicted
Facies 2

Predicted
Facies 3

True Facies 1 Target — 32 Target — 0 Target — 0

ML1 — 20 ML1 — 12 ML1 — 0

ML2 — 19 ML2 — 13 ML2 — 0

ML3 — 12 ML3 — 19 ML3 — 1

MC — 22 MC — 9 MC — 1

MCMC — 29 MCMC — 3 MCMC — 0

True Facies 2 Target — 0 Target — 13 Target — 0

ML1 — 6 ML1 — 4 ML1 — 3

ML2 — 7 ML2 — 3 ML2 — 3

ML3 — 8 ML3 — 3 ML3 — 2

MC — 8 MC — 3 MC — 2

MCMC — 8 MCMC — 2 MCMC — 3

True Facies 3 Target — 0 Target — 0 Target — 35

ML1 — 1 ML1 — 1 ML1 — 33

ML2 — 1 ML2 — 4 ML2 — 30

ML3 — 1 ML3 — 4 ML3 — 30

MC — 5 MC — 6 MC — 24

MCMC — 3 MCMC — 7 MCMC — 25

Figure 13. Inversion results using the Markov chain Monte Carlo (case MCMC):
(a) reference facies classification, (b) predicted facies, (c) predicted facies probability,
and (d) seismic response (the predicted data in black versus the reference data in red).
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squares sense, and others might underestimate the uncertainty. How
to assess accuracy and precision is also subjective. Optimal solutions
in terms of least-squares error might not show the expected hetero-
geneity and might differ from optimal solutions in terms of correla-
tion. If we replace the correlation measure for the mismatch with the
L1 or L2 norm, some of the conclusions of this study might be differ-
ent. Similarly, if we implement different variations of the method
(Metropolis-Hastings for the MCMC study or CNN for the ma-
chine-learning approach), the results might be slightly different.
Overall, probabilistic methods based on MCMC provide a better
quantification of the uncertainty, whereas machine-learning algo-
rithms provide a more accurate solution in terms of data mismatch
and model validation with the training data set.
The proposed methods are more computationally demanding

than standard facies classification methods that do not account
for the spatial correlation of facies. However, pointwise facies clas-
sification methods generally lead to geologically unrealistic facies
transitions and frequencies. Instead, the proposed methods impose a
spatial correlation model, in the form of a prior statistical model (for
the Monte Carlo method) or as a spatially correlated training data
set (for machine-learning algorithms). Spatially correlated models
allow preserving the geologic realism of facies sequences to mimic
the stratigraphy and the depositional processes. The extension to 3D
models can be achieved according to two approaches: (1) trace-by-
trace classification or (2) global inversion with spatial correlation.
The trace-by-trace inversion approach is computationally efficient
but does not account for the lateral correlation of the facies. A
global inversion with lateral correlation allows mimicking the con-
tinuity of facies and geobodies; however, the application in 3D is
extremely challenging. Transition probabilities in the lateral direc-
tions are difficult to estimate and can be anisotropic and the dimen-
sions of the training data sets would drastically increase.
The training data set in the RNN method implementation and the

simulated realizations in the Monte Carlo approach were generated
according to a first-order Markov chain to control the structure of
the facies sequence and their proportions. The predicted seismic re-
sponse was generated using a convolutional model. More advanced
geostatistical methods could be used for the simulation of the facies
sequences, such as multipoint geostatistics or process-based mod-
eling, as well as more rigorous rock physics and wave-propagation
models could be used for the computation of the seismic response.
This would allow integrating additional geologic and physical

constraints in the classification problem. Comparisons with higher
order Markov chain methods have been recently proposed by
Talarico et al. (2019) and Tian et al. (2019).

CONCLUSION

We implemented and compared machine learning and Monte
Carlo methods for the facies classification problem from seismic data.
In all of the methods, the training data set and the simulated model
were generated according to geologic rules, summarized in the ver-
tical transition matrix for the facies sequence, and physical models
(i.e., rock-physics models) for generation of the predicted data sets.
Both categories of methods provide satisfactory results in terms of
facies predictions. Overall, we conclude that machine-learning meth-
ods can lead to more accurate results if the training data set is large
enough, but these methods might not be adequate to represent the
uncertainty in the solution. The machine-learning algorithms have
been tested using a training data set with a large number of samples;
however, multiple runs of the same algorithms with different training
sub-data sets lead to similar solutions. In practical applications, train-
ing data sets could be obtained by combining measured data with
predictions obtained using statistical rock-physics models. Monte
Carlo methods provide a better quantification of the uncertainty
but might lead to less accurate solutions if the prior information is
not informative enough, for example, when the transition matrix
is unknown, and the number of simulations is not large enough.
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APPENDIX A

SAMPLING ALGORITHM

Assuming n possible facies, the first step requires a uniform ran-
dom sampling of n values in ½0; 1� with the constraint that their sum
is equal to 1, such that the corresponding conditional probability is
a valid probability density function. This procedure is repeated for
each of the n rows of the transition matrix. This procedure generates
n random n-element row vectors of values, ½pi;1; : : : ; pi;n� for
i ¼ 1; : : : ; n, uniformly distributed in the ðn − 1Þ-dimensional
space of solutions, each with a fixed sum, equal to 1, and subject
to a restriction 0 ≤ pi;j ≤ 1, where pi;j is defined as the probability
of observing facies i at a given location k given facies j at the
previous location k − 1, that is, pi;j ¼ Pðfk ¼ ijfk−1 ¼ jÞ, for
i; j ¼ 1; : : : ; n.
After sampling the transition matrix, we sample the facies profile

of N samples by adopting a sequential approach: We initially sam-
ple the first sample f1, at the top of the sequence, from the prior
probability of the facies (which is obtained by multiplying the tran-
sition matrix by itself several times until convergence); then, we

Table 6. Comparison of computational efficiency.

Method Time (s)

RNN — case ML1 (1000 models) 772

RNN — case ML1 (10,000 models) 14,551

RNN — case ML12 77,200

RNN — case ML13 14,791

MC — 10,000 realizations 261

MC — 100,000 realizations 2617

MC — 1,00,000 realizations 26,173

MCMC — 1 chain 11,734

MCMC — 10 chains 117,342
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sample the subsequent values ffkgk¼2; : : : ;N from the probabil-
ity Pðfkjfk−1Þ.
We then assign a porosity value by sampling facies-dependent

Gaussian distributions estimated from the data, apply a linearized
rock-physics model to compute P-impedance, and compute the pre-
dicted seismograms using a convolutional model of a wavelet and
the reflection coefficient obtained from the calculated impedances.
In the proposed implementation, we accept all of the realizations
with a correlation coefficient between the predicted model response
and the observed data higher than 0.9. According to this criterion,
the realizations can also be ranked based on the degree of correla-
tion between the prediction and the data. The proposed method is
also known as the approximate Bayesian computation method
(Vrugt and Sadegh, 2013; Chiachio et al., 2014; Olson and Kleiber,
2017). The simulation method is similar to the stochastic pseudo-
well approach introduced by Connolly and Hughes (2016), but in
our implementation, we stochastically sample the transition matrix
before simulating the facies.
Because facies classification is generally performed in a limited

interval, the number of samples in the segment of the seismic trace
might contain a small number N of samples. Such a number might
be too small for the facies realization to be representative of the
corresponding transition matrix; therefore, we propose to generate
a larger trace of M samples and select a subset of consecutive N
samples with the best correlation with the measured data.
Alternatively, we propose anMCMCmethod in which we sample

the facies realizations conditional to the data according to the
Metropolis algorithm. The proposal distribution pðfnewjdÞ is built
as a convex combination of the prior probability distribution PðfÞ
and the probability distribution Pðf i−1jdÞ of the last accepted reali-
zation f i−1:

PðfnewjdÞ ¼ wPðf i−1jdÞ þ ð1 − wÞPðfÞ; (A-1)

weighted by the correlation between the measured data d and
the predicted data di−1 obtained from the realization f i−1,
w ¼ corrðd; di−1Þ. At each location k, the value fnewk of the new
facies realization fnew is sampled by integrating the probability
in equation A-1 and the transition probabilities from the given
transition matrix:

Pðfnewk jd; fÞ ¼
YM
k¼1

Pðfkjfk−1ÞPðfnewk jdÞ; (A-2)

with Pðf1jf0Þ ≔ Pðf1Þ. The new proposed realization fnew is ac-
cepted with probability

a ¼ min

�
1;
pðdjfnewÞ
pðdjf i−1Þ

�
: (A-3)

The simulation method is similar to the probability perturbation
methods proposed by Caers and Hoffman (2006), but in our imple-
mentation, the new facies profile is sampled by integrating the prior
information in the transition matrix of the Markov chain. To account
for the uncertainty in the transition matrix in the Markov chain, one
could run r independent chains using the r transition matrices
corresponding to the best r realizations obtained in the Monte Carlo
acceptance-rejection sampling or from a feasibility study.
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