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ABSTRACT

Rock physics modeling aims to provide a link between
rock properties, such as porosity, lithology, and fluid satu-
ration, and elastic attributes, such as velocities or imped-
ances. These models are then used in quantitative seismic
interpretation and reservoir characterization. However, most
of the geophysical measurements are uncertain; therefore,
rock physics equations must be combined with mathemati-
cal tools to account for the uncertainty in the data. We com-
bined probability theory with rock physics modeling to
make predictions of elastic properties using probability dis-
tributions rather than definite values. The method provided
analytical solutions of rock physics models in which the in-
put is a random variable whose exact value is unknown but
whose probability distribution is known. The probability
distribution derived with this approach can be used to quan-
tify the uncertainty in rock physics model predictions and in
rock property estimation from seismic attributes. Examples
of fluid substitution and rock physics modeling were studied
to illustrate the application of the method.

INTRODUCTION

Rock physics addresses the relationships between rock proper-
ties, such as porosity, lithology, and fluid saturations, and elastic
properties, such as velocities or impedances. A rock physics model
is then a set of equations that transforms the rock properties into
elastic attributes. The model can be a simple empirical relation that
fits well-log observations or a more sophisticated theoretical model,
such as granular media models or inclusion models (Mavko et al.,
2009). The model can depend on a single parameter, for example,
porosity, or it can involve multiple properties, for example, porosity,
clay content, water, and oil saturations of a rock. The common fea-
ture of all these models is that the inputs are assigned values. In
other words, when we apply a rock physics model, we generally

assume that the input data are correct. However, well-log data
and laboratory measurements are all affected by errors that depend
on the precision of the tools used for the measurements and also on
the natural variability and heterogeneity of the rock. Furthermore,
most of the measurements we use in rock physics are not actual
measurements, but the result of another mathematical operation.
For example, the well curves of porosity, clay content, and water
saturation are the results of formation evaluation analysis in which
actual measurements (gamma ray, neutron porosity, density, and re-
sistivity) are transformed into the above-mentioned petrophysical
curves.
In oil recovery, it is essential to evaluate the uncertainty associ-

ated to each step of the reservoir modeling workflow. Even if rock
physics is a very accurate approximation of the reality, the input
data are generally uncertain; therefore, the rock physics model pre-
dictions are uncertain as well. We propose here a new probabilistic
approach to rock physics modeling in which the input data are not
assigned definite values but probability distributions. As a conse-
quence, the result of the rock physics model is not just a predic-
tion with a single value but a probability distribution that will show
the most likely value of our prediction and also the associated
uncertainty.
A probability distribution assigns a probability value to each

measurable subset of the possible outcomes of a random variable
(Papoulis, 1984). For example, if the well log indicates that at a
given depth, porosity is 30% but we know that due to the tool pre-
cision the measurement error is�1%, then instead of using the mea-
sured value of 30%, we should use a probability distribution,
normal or triangular, with mean 30% and choose the variance such
that it will describe the uncertainty in the measurement. Another
example is for gas saturation: We know from rock physics measure-
ments that a small amount of gas, such as 10%, largely affects
velocities. However, it is hard to distinguish between a small
amount of gas and a large amount of gas; therefore, we should
use a uniform probability distribution between 10% and 90% to de-
scribe the gas saturation distribution rather than use a single value.
A similar concept has already been presented in the past in stat-

istical rock physics. Statistical rock physics is introduced by Mavko
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and Mukerji (1998), where they combine rock physics modeling
with Monte Carlo simulations to generate multiple geologic scenar-
ios to be used in hydrocarbon prospect detection from seismic data.
The technique consists in assuming a distribution of a given rock or
fluid property, generating a set of samples, applying the rock phys-
ics model, and computing a training data set of rock physics pre-
dictions to be used as a catalog for seismic interpretation. Similar
strategies are presented later in Avseth et al. (2001) and Mukerji
et al. (2001), where the authors first create a training data set of
rock physics model predictions and then use this training data
set to classify inverted seismic attributes. A good description of this
technique with multiple examples is given in Avseth et al. (2005).
The same statistical rock physics approach has then been adopted in
several inversion workflows. Indeed, the physical model can be any
rock physics model: velocity-saturation (Mavko and Mukerji,
1998), velocity-porosity (Doyen, 1988), velocity-pressure (Doyen,
2007), amplitudes-velocities (Buland and Omre, 2003), and poros-
ity-permeability, etc.; it can include discrete properties such as fa-
cies classification (Eidsvik et al., 2004; Gallop, 2006), and it can
involve multiple properties (Bachrach, 2006; Larsen et al., 2006;
Gunning and Glinsky, 2007; Buland et al., 2008; González et al.,
2008; Spikes et al., 2008; Bosch et al., 2009; Grana and Della
Rossa, 2010; Rimstad and Omre, 2010; Ulvmoen and Omre,
2010). Some of these inversion methods are summarized in Doyen
(2007) and Bosch et al. (2010).
In the previous literature, the distribution of the input rock prop-

erties is assumed from prior geologic information or estimated from
actual measurements, then a training set of samples is generated
using Monte Carlo simulations, and the set of predictions is ob-
tained by applying the rock physics model (velocity-porosity, veloc-
ity-pressure, velocity-saturation, and so on) to the initial training
data set. If the model is not linear, the initial distribution shape
is not preserved and the posterior probability function has to be nu-
merically estimated. In our work, we introduce the analytical sol-
ution of the problem so that the posterior probability function has a
closed analytical form. For demonstration purposes, most of the ex-
amples are shown for the univariate case. The method is then ex-
tended to the multivariate case. The main advantage is the analytical
solution of the uncertainty quantification problem. However, we
warn the reader that for some rock physics models, the multivariate
formulation can be complicated and Monte Carlo simulations can
provide good approximations. On the other hand, if the output dis-
tribution is not Gaussian or more generally if it cannot be approxi-
mated by an analytical form, the probability density function (PDF)
approximation from Monte Carlo samples can introduce a bias in
the uncertainty quantification of the output PDF.
In this paper, we first present the general method and then show

the application to a well-known rock physics model, Gassmann’s
equations (Mavko et al., 2009) with different uncertain input param-
eters, such as porosity and saturation, and different outputs, such as
dry and saturated rock bulk moduli. The same method is then ap-
plied to other rock physics models, such as an empirical velocity
prediction relation (Raymer’s model), a theoretical granular media
model (Dvorkin’s soft-sand model), and an inclusion model (Kus-
ter-Toksöz). In the last part, we show basic examples of applications
to laboratory measurements and well-log data sets. In this formu-
lation, we only consider uncertainty in the input data. Spatial un-
certainty is not included. However, if an analytical solution of the
uncertainty propagation problem is available, Markov chain Monte

Carlo methods can be used to sample from the output distributions
and include spatial correlation.

METHODOLOGY

In this section, we present the mathematical theory to apply a
rock physics model to a random variable, or a PDF, instead of
the traditional approach where we apply the rock physics model
to a deterministic value.
We first consider a variable X whose value is uncertain, for ex-

ample, porosity. In statistics, such a variable is called a random var-
iable. A random variable (or stochastic variable) is a variable whose
value is subject to variations and cannot be deterministically as-
sessed. In other words, the specific value cannot be predicted with
certainty before an experiment. All the rock properties in the subsur-
face can be considered as random variables because they cannot be
measured exactly.
We denote with fXðxÞ the probability distribution of a continuous

random variable X. A probability distribution is a function that
gives the probability for each subset of values of the random
variable. Mathematically, we define the PDF using the following
equation:

fXðxÞdx ¼ Pðx < X ≤ xþ dxÞ; (1)

where dx is a differential element of infinitesimal length and Pðx <
X ≤ xþ dxÞ is the probability of X assuming a value between x and
xþ dx. We recall that because a continuous variable can take any
value on the real axis, there is an infinite number of possible real-
izations; therefore, the probability that a continuous variable X will
take the single value x is 0, i.e., PðX ¼ xÞ ¼ 0. This is why we
introduce the differential in the definition. Because occurrences
in different intervals are mutually exclusive, we can compute the
probability of the outcome of X being in the interval ½a; b� using
the integral form:

Pða < X < bÞ ¼
Zb
a

fXðxÞdx: (2)

A PDF must satisfy the following properties:

• 0 ≤ fXðxÞ ≤ þ∞ (3)

•

Z
fXðxÞdx ¼ 1: (4)

These conditions guarantee that the probability values cannot be
negative nor greater than 1.
A continuous random variable is completely defined by its PDF;

however, in some special cases, the complete PDF is not necessary
and the distribution of the continuous random variable can be de-
scribed by a finite number of parameters: These parameters are
called the moments of random variables. Examples of moments
are the mean and the variance.
The mean is the most common measure used to describe the most

likely value that a random variable can get. The mean of a continu-
ous random variable is defined as
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μX ¼
Z

xfXðxÞdx: (5)

However, the mean cannot describe how uncertain the random var-
iable is. A common measure for the uncertainty is the variance:

σ2X ¼
Z

ðx − μXÞ2fXðxÞdx: (6)

The variance describes the spread of the distribution around the
mean. The standard deviation is the square root of the variance.
Different PDFs can be used for continuous random variables. For

most of them, if we know the shape of the distribution and the mean
and the variance, the PDF is completely defined. The concepts of
PDF, and as a consequence the concepts of mean and variance, can
be extended to the multivariate domain, but for the mathematical
formulation of the rock physics problem, we will limit our descrip-
tion to the univariate case.
The most common PDF is the Gaussian distribution. We say that

a random variable X is distributed according to a Gaussian distri-
bution NðμX; σ2XÞ with mean μX and variance σ2X , if its PDF fXðxÞ
can be written as

fXðxÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffi
2πσ2X

p e
−1
2

ðx−μX Þ2
σ2
X : (7)

The Gaussian distribution is symmetric and can be used to de-
scribe many phenomena in nature.
Another commonly used distribution is the uniform distribution

over a given interval, in which a random variable is equally likely to
have any value in the assigned interval. In other words, the PDF is
constant over the assigned range. The uniform distribution is some-
times called noninformative because it does not provide any addi-
tional knowledge other than the interval boundaries.
The problem that we face in this paper is to derive analytical ex-

pressions for nonlinear transformations of the distribution of a given
random variable. If the transformation is linear, then the shape of the

distribution is preserved. If the PDF is fully described by the mean
and the variance, such as for the Gaussian distribution, to compute
the PDF of the predicted variable we just have to compute the mean
and the variance of the new distribution. For example, if X is
distributed according to a Gaussian distribution NðμX; σ2XÞ with
mean μX and variance σ2X , and we apply a linear transformation
Y ¼ gðXÞ ¼ aX þ b, then Y is still distributed according to a Gaus-
sian distribution NðaμX þ b; a2σ2XÞ with mean

μY ¼ aμX þ b (8)

and variance

σ2Y ¼ a2σ2X: (9)

Similarly, if X is distributed according to a uniform distribution
over the interval ½c; d�, X ∼Uð½c; d�Þ and we apply a linear trans-
formation Y ¼ gðXÞ ¼ aX þ b, then Y is still distributed according
to a uniform distribution Y ∼Uð½acþ b; adþ b�Þ.
This result is intuitive because if we take a linear transformation

of a distribution, we can shift the mean and change the variance, i.e.,
the spread around the mean, but we cannot distort the shape of the
distribution. For example, we can assume that porosity in a rock is
distributed according to a Gaussian distribution (neglecting low
probability values for porosities lower or higher than physical
bounds). We then apply a rock physics model to compute the cor-
responding velocity distribution. If the rock physics model is linear,
then the distribution of P-wave velocity is still Gaussian (Figure 1)
and we can compute the mean and the variance using equations 8
and 9.
If the rock physics model is nonlinear, then the shape of the input

distribution, for instance the Gaussian distribution of porosity, is not
necessarily preserved in the distribution of the predicted variable,
for instance, the distribution of P-wave velocity (Figure 2). To over-
come this problem, a Monte Carlo simulation can be introduced to
estimate the posterior distribution of the predicted variable, in our
example, P-wave velocity. For an accurate estimation, the Monte
Carlo simulation requires a training data set of a very large number

Figure 1. Linear rock physic model applied to a data set of 10,000 samples: (a) input porosity distribution, (b) linear rock physics model,
(c) predicted P-wave velocity distribution.
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of samples. Furthermore, when the distribution of the Monte Carlo
samples is not Gaussian, it is often necessary to approximate the
distribution of the output samples with a parametric distribution,
which can lead to errors in the uncertainty quantification problem.
We propose here to exactly solve this problem using an analytical
formulation. The analytical solution can be used in inverse problem
applications, such as seismic reservoir characterization and reser-
voir modeling.
The method we propose is based on the following theorem

(Papoulis, 1984): if X is distributed according to a PDF fXðxÞ,
and Y is equal to Y ¼ gðXÞ, where g is any transformation, linear
or nonlinear, then the PDF fYðyÞ can be computed as

fYðyÞ ¼
Xn
i¼1

fXðxiÞ��� d
dx gðxiÞ

��� ; (10)

where xi, for i ¼ 1; : : : ; n, are the real roots of the func-
tion Y ¼ gðXÞ.
If X is the uncertain input variable with a known PDF, Y is the

prediction, and g is the rock physics model, then we can compute
the PDF fYðyÞ in three steps:

1) We first compute the uncertain input variable as a function of
the prediction X ¼ g−1ðYÞ.

2) We compute the derivative of the rock physics model d
dX gðXÞ.

3) We apply equation 10.

In a multidimensional problem, the workflow is similar and aims
to determine the joint density fZ;Wðz; wÞ of two random variables
ðZ;WÞ that are functions of two other random variables (X; Y)�

Z ¼ gðX; YÞ
W ¼ hðX; YÞ (11)

in terms of joint density of (X; Y). It is important to consider the
joint density of the random variables in order to account for the
correlation between the variables. To find fZ;Wðz; wÞ, we first solve

the system in equation 11 to find the real roots (xi; yi) for
i ¼ 1; : : : ; n. Then,

fZ;Wðz; wÞ ¼
Xn
i¼1

fX;Yðxi; yiÞ
jJðxi; yiÞj

; (12)

where Jðxi; yiÞ is the Jacobian of the transformation in equation 11
computed in the root ðxi; yiÞ and jJðxi; yiÞj is the determinant of the
Jacobian (Papoulis, 1984). The extension to the multivariate case
has been illustrated for the bivariate case, but the formulation is
valid for any finite number of variables. When the analytical form
of the rock physics model is too complicated to analytically com-
pute equation 12, analytical approximations can be introduced us-
ing Talyor’s series expansions and first order approximations.
In the following paragraphs, we present several applications and

examples in the rock physics domain: Gassmann’s fluid equation,
Raymer’s velocity prediction, Dvorkin’s soft-sand model, and Kus-
ter-Toksöz’s inclusion model.

Gassmann’s equation with uncertain porosity

One of the most popular rock physics model is Gassmann’s equa-
tion for fluid substitution in porous rocks (Mavko et al., 2009). The
idea of Gassmann’s equation is to predict elastic moduli and veloc-
ities of rocks saturated with different fluids. For example, we could
be interested in predicting velocities of gas-saturated rocks, but well
logs only contain measurements for oil-saturated and/or water-sa-
turated rocks.
Gassmann’s theory (Mavko et al., 2009) assumes a homogeneous

mineral modulus (Kmat) and statistical isotropy of the pore space,
and it is valid at low frequencies where the induced pore pressure is
equilibrated through the pore space. Gassmann’s equation states
that when a rock is loaded with a fluid under an increment of pore
pressure, the shear modulus of the saturated rock (μsat) is not af-
fected by the fluid change, and it is equal to the dry-rock shear
modulus (μsat ¼ μdry), whereas the bulk modulus of the saturated
rock (Ksat) can be computed using the following equation:

Figure 2. Nonlinear rock physic model applied to a data set of 10,000 samples: (a) input porosity distribution, (b) nonlinear rock physics
model, (c) predicted P-wave velocity distribution.
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Ksat ¼ Kdry þ
�
1 − Kdry

Kmat

�
2

ϕ
Kfl

þ 1−ϕ
Kmat

− Kdry

K2
mat

; (13)

where Kmat is the bulk modulus of the mineral frame, Kfl is the bulk
modulus of the fluid, Kdry is the dry rock bulk modulus, and ϕ is the
porosity. Similarly, the dry-rock bulk modulus Kdry can be derived
from the saturated-rock bulk modulus using the inverse equation:

Kdry ¼
Ksat

�
ϕ Kmat

Kfl
þ 1 − ϕ

�
− Kmat

ϕ Kmat

Kfl
þ Ksat

Kmat
− 1 − ϕ

: (14)

Gassmann’s equations allow predicting saturated-rock moduli
from dry-rock moduli and vice versa when the properties of the ma-
trix mineralogical components, the properties of the fluids, and the
porosity of the rock are known, but the most common application is
predicting the saturated-rock moduli when one fluid is replaced
with another.
These equations are generally applied to scalar values or vectors

of porosity. In our application, we use a probability distribution for
an uncertain variable, for example, porosity, to compute the satu-
rated-rock bulk modulus using equation 10. To apply equation 10,
we first compute the real roots of equation 13. If we assume that
Kmat, Kfl, and Kdry are measured values, in other words, if Kmat,
Kfl, and Kdry are constant and Ksat is only a function of ϕ, then
equation 13 has a single solution:

ϕ1 ¼
KflðKmat − KdryÞðKmat − KsatÞ
KmatðKmat − KflÞðKsat − KdryÞ

(15)

for every value Ksat.
The derivative of Ksat with respect to ϕ is

d
dϕ

KsatðϕÞ ¼ −

�
1
Kfl

− 1
Kmat

��
1− Kdry

Kmat

�
2

h
ϕ
�

1
Kfl

− 1
Kmat

�
þ 1

Kmat

�
1− Kdry

Kmat

�i
2

¼ KmatKflðKdry −KmatÞ2ðKfl −KmatÞ
½KdryKfl −KmatðKfl −ϕKfl þϕKmatÞ�2

(16)

(see Appendix A for the details of the derivation).
If we assume that porosity is distributed according to a Gaussian

distribution ϕ ∼ Nðμϕ; σ2ϕÞ with mean μϕ and variance σ2ϕ, by ap-
plying equation 10, and using linear algebra, we obtain that the dis-
tribution fKsat

ðKsatÞ of the saturated-rock bulk modulus is

fKsat
ðKsatÞ¼

fϕðϕ¼ϕ1Þ��� d
dϕKsatðϕÞ

���
jϕ¼ϕ1

¼ KflðKdry−KmatÞ2
KmatðKmat−KflÞðKdry−KsatÞ2

1ffiffiffiffiffiffiffiffiffiffi
2πσ2ϕ

q e
−
ðϕ1−μϕÞ2

2σ2
ϕ ;

(17)

where we remove the absolute value because Kmat > Kfl. In most
practical applications, Kdry cannot be measured and it is computed
using another rock physics model. For example, by using the

concept of critical porosity ϕ0 in Nur’s model (Mavko et al.,
2009) we can write the dry-rock bulk modulus as a function of
the matrix bulk modulus and the porosity:

Kdry ¼ Kmat

�
1 −

ϕ

ϕ0

�
: (18)

Under this assumption, we can combine the rock physics model
in equation 18 with Gassmann’s equation in equation 13 to obtain
the deterministic expression for the saturated-rock bulk modulus,
which only depends on Kmat, Kfl, and ϕ. Then, we can apply
the same approach based on equation 10, to derive the posterior
distribution of Ksat under the assumption that Kmat and Kfl are con-
stant. Skipping the calculations, we obtain

fKsat
ðKsatÞ ¼

fϕðϕ ¼ ϕ1Þ��� d
dϕKsatðϕÞ

���
jϕ¼ϕ1

¼
����Kfl − ϕ0ðKmat − KflÞ

KmatðKfl − KmatÞ
���� 1ffiffiffiffiffiffiffiffiffiffi

2πσ2ϕ

q e
−
ðϕ1−μϕÞ2

2σ2
ϕ ; (19)

where

ϕ1 ¼
ðϕ0ðKfl − KmatÞ − KflÞðKmat − KsatÞ

KmatðKfl − KmatÞ
: (20)

In the second example, we use the same approach to derive the
distribution of the dry-rock bulk modulus fKdry

ðKdryÞ when Kmat,
Kfl, and Ksat are known measured values and ϕ ∼ Nðμϕ; σ2ϕÞ. If
we assume that Kmat, Kfl, and Ksat are constant, in other words,
if Kdry is only a function of ϕ, then equation 14 has only a single
solution:

ϕ1 ¼
KflðKmat − KdryÞðKmat − KsatÞ
KmatðKmat − KflÞðKsat − KdryÞ

(21)

for every value Kdry. The derivative of Kdry with respect to ϕ is

d
dϕ

KdryðϕÞ ¼
KmatKflðKmat − KflÞðKsat − KmatÞ2

ðϕK2
mat − ϕKmatKfl þ KsatKfl − KmatKflÞ

:

(22)

The distribution of the dry-rock bulk modulus fKdry
ðKdryÞwhen ϕ ∼

Nðμϕ; σ2ϕÞ is then

fKdry
ðKdryÞ¼

fϕðϕ¼ϕ1Þ��� ddϕKdryðϕÞ
���
jϕ¼ϕ1

¼ KflðKmat−KsatÞ2
KmatðKmat−KflÞðKdry−KsatÞ2

1ffiffiffiffiffiffiffiffiffiffi
2πσ2ϕ

q e
−
ðϕ1−μϕÞ2

2σ2
ϕ ;

(23)

where we removed the absolute value because Kmat > Kfl.

Approach to rock physics modeling D127

D
ow

nl
oa

de
d 

07
/2

5/
17

 to
 6

9.
14

6.
98

.1
59

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/



Gassmann’s equation with uncertain saturation

Similarly, we can apply equation 10 to derive the analytical for-
mulation of the saturated-rock bulk modulus when water saturation
sw is described by a probability distribution rather than a definite
value. As we can observe in equation 13, sw does not explicitly
appear in Gassmann’s equation, but the changes in water saturation
affect the fluid bulk modulus Kfl.
Laboratory experiments show that not only the fluid saturations

but also the spatial distribution of the fluids inside the pore space
(Mavko et al., 2009) affect velocity values. Different equations can
be used to describe the different spatial distributions: For patchy
saturation, we can use a linear average of the fluid bulk moduli,
whereas for a homogeneous fluid distribution, the harmonic average
of the fluid moduli is more realistic. In this section, we analyze
both cases.
If we assume a patchy saturation of two fluid phases, for exam-

ple, water and gas, the fluid mixing law to compute the fluid bulk
modulus can be written as a linear average:

Kfl ¼ Kwsw þ Kgð1 − swÞ; (24)

where Kw is the bulk modulus of water and Kg is the bulk modulus
of gas.
We then assume that Kmat, Kdry, and ϕ are constant (and not

equal 0), and we specify a probability distribution fswðswÞ for water
saturation. Under these assumptions, the inverse function can be
written as

sw1
¼ Kdryð−ϕK2

mat þ ξKgÞ þ KmatðϕKmatKsat − ψKgÞ
ðKg − KwÞðξKdry − ψKmatÞ

;

(25)

where ξ ¼ Kmat þ ϕKmat − Ksat and ψ ¼ Kmat þ ϕKsat − Ksat and
the derivative of Ksat with respect to sw is

d
dsw

KsatðswÞ

¼
ϕðKw−KgÞ

�
1− Kdry

Kmat

�
2

ðKwswþKgð1− swÞÞ2
h

1
Kmat

�
1− Kdry

Kmat

�
þϕ
�

1
KwswþKgð1−swÞ−

1
Kmat

�i
2
:

(26)

By applying equation 10, we obtain that the distribution
fKsat

ðKsatÞ of the saturated-rock bulk modulus is

fKsat
ðKsatÞ ¼

fswðsw ¼ sw1
Þ

j d
dsw

KsatðswÞjjsw¼sw1

¼ ϕK2
matðKdry − KmatÞ2

ðKw − KgÞðξKdry − ψKmatÞ2
fswðsw ¼ sw1

Þ;

(27)

where fsw ðsw ¼ sw1
Þ is the input PDF of water saturation evaluated

in sw1
and where we removed the absolute value because Kw > Kg.

If we assume a homogeneous saturation of two fluid phases,
water and gas, the fluid mixing law to compute the fluid bulk modu-
lus, can be written as a harmonic average:

Kfl ¼
1

sw
Kw

þ ð1−swÞ
Kg

; (28)

and with similar computations, we can derive the distribution
fKsat

ðKsatÞ of the saturated-rock bulk modulus

fKsat
ðKsatÞ ¼

fswðsw ¼ sw1
Þ��� d

dsw
KsatðswÞ

���
jsw¼sw1

¼ KwKgðKdry − KmatÞ2
ϕK2

matðKw − KgÞðKdry − KsatÞ2
fswðsw ¼ sw1

Þ;

(29)

where Kw > Kg and

sw1
¼ Kw½Kdryð−ϕK2

mat þ ξKgÞ þ KmatðϕKmatKsat − ψKgÞ�
ϕK2

matðKg − KwÞðKdry − KsatÞ
:

(30)

Another common mixing law for fluid mixtures is given by Brie’s
equation (Brie et al., 1995). The Voigt average (used for patchy sat-
uration, equation 24) and the Reuss average (used for homogeneous
saturation, equation 28) represent the upper and lower bounds for a
mixture of fluids; however, in most of the cases, data fall in between
these two bounds and Brie’s equation provides a better fit for these
data sets thanks to the exponent that can be calibrated to the data
(Brie et al., 1995).
It is important to point out that generally, water saturation is not

distributed according to a Gaussian distribution: Especially when
the fluid distribution is not patchy, it is more likely to observe
values close to the extremes of the physical range, 0% and
100%. This behavior can be better described by a beta distribution
(Papoulis, 1984). The PDF of a random variable X distributed
according to a beta distribution with parameters α and β can be writ-
ten as

fXðxÞ ¼
xα−1ð1 − xÞβ−1

Bðα; βÞ ; (31)

where α and β are two parameters that control the shape of the dis-
tribution and are related to the mean and the variance and Bð:Þ is the
beta function (Papoulis, 1984). If we assume that sw ∼ Bðα; βÞ and
we assume a homogeneous fluid distribution, then the distribution
fKsat

ðKsatÞ of the saturated-rock bulk modulus becomes

fKsat
ðKsatÞ¼

fϕðsw ¼ sw1
Þ��� d

dsw
KsatðswÞ

���
jsw¼sw1

¼ KwKgðKdry−KmatÞ2
ϕK2

matðKw−KgÞðKdry−KsatÞ2
sα−1w1

ð1− sw1
Þβ−1

Bðα;βÞ ;

(32)

and sw1
is the same as in equation 30.

All these equations can be applied to Gassmann-Mavko equation
(Mavko et al., 1995) in which the bulk modulus is replaced by the
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compressional modulus Msat ¼ Ksat þ 4∕3μsat. The Gassmann-
Mavko equation is often used to perform fluid substitution when
S-wave velocities are not available. The equation predicts the com-
pressional modulus of a saturated rock when the initial fluid is re-
placed with another. The use of the compressional modulus instead
of the bulk modulus allows performing fluid substitution without
the explicit knowledge of the shear modulus, hence the value of
the S-wave velocity (Mavko et al., 1995).

Raymer’s model with uncertain porosity

Another very common equation used in rock physics is Raymer’s
equation (Raymer et al., 1980). Raymer’s equation is an empirical
equation to predict P-wave velocity (VP) given the velocity of the
compressional waves in the solid (Vmat

P ) and in the fluid (Vfl
P) and the

porosity of the rock. The equation has different formulations for
different porosity ranges; in this work, for simplicity we only focus
on the porosity interval [0,0.37], where the equation for VP can be
written as

VP ¼ ð1 − ϕÞ2Vmat
P þ ϕVfl

P: (33)

Similarly to the previous examples, we first solve the equation for
ϕ and obtain two solutions:

ϕ1;2 ¼
−Vfl

P þ 2Vmat
P �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðVfl

PÞ2 þ 4VPVmat
P − 4Vfl

PV
mat
P

p
2Vmat

P

;

(34)

but we only use ϕ1 because ϕ2 provides values greater than 1, and
we compute the derivative of VP with respect to ϕ, assuming that
Vmat
P and Vfl

P are known constant values:

d
dϕ

VPðϕÞ ¼ Vfl
P − 2ð1 − ϕÞVmat

P ; (35)

and by applying equation 10 and using linear algebra, we obtain

fVP
ðVPÞ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðVfl

PÞ2 þ 4VPVmat
P − 4Vfl

PV
mat
P

p fϕðϕ ¼ ϕ1Þ:

(36)

Dvorkin (2008) extends Raymer’s equation to VS predictions:

VS ¼ ð1 − ϕÞ2Vmat
S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − ϕÞρmat

ð1 − ϕÞρmat þ ϕρfl

s
; (37)

where ρmat is the density of the matrix and ρfl is the density of the
fluid. Then, the corresponding PDF for VS can be derived in the
same way as in equation 36.

Soft-sand model with uncertain porosity

Raymer’s equation is an empirical equation; however, several
theoretical models have been developed to compute elastic moduli
of porous materials: granular media models, inclusion models, etc.

(see Mavko et al., 2009). In this section, we propagate the uncer-
tainty of porosity to dry-rock bulk modulus predictions through the
soft-sand model (Dvorkin and Nur, 1996). The soft-sand model be-
longs to the group of granular media models and is based on the
Hertz-Mindlin contact theory. The soft-sand model extrapolates
elastic property values in the porosity range between zero and
the critical porosity by using a modified Hashin-Shtrikman lower
bound (Hashin and Shtrikman, 1963; Mavko et al., 2009).
For porosity values ranging between zero and the critical porosity

ϕ0, the soft-sand rock physics model connects the matrix elastic
moduli Kmat and μmat (elastic moduli at zero porosity) with the
Hertz-Mindlin elastic moduli KHM and μHM (elastic moduli
of the dry rock at critical porosity) using the modified Hashin-
Shtrikman lower bounds:

Kdry ¼
 

ϕ
ϕ0

KHM þ γ
þ

1 − ϕ
ϕ0

Kmat þ γ

!−1

− γ; (38)

μdry ¼
 

ϕ
ϕ0

KHM þ η
þ

1 − ϕ
ϕ0

μmat þ η

!−1

− η; (39)

where

γ ¼ 4

3
μHM;

η ¼ 1

6μHM

9KHM þ 8μHM
KHM þ 2μHM

;

KHM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P½nð1 − ϕ0Þμmat�2
18½πð1 − νÞ�2

3

s
;

μHM ¼ 5 − 4ν

5ð2 − νÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3P½nð1 − ϕ0Þμmat�2

2½πð1 − νÞ�2
3

s
; (40)

and where ν is the matrix Poisson’s ratio, n is the coordination num-
ber (average number of contacts per grain), and P is the effective
pressure (Mavko et al., 2009). In the following, we assume that all
the parameters in equation 40 are constant. Under these assump-
tions, the dry-rock bulk modulus in equation 38 and the dry-rock
shear modulus in equation 39 are only functions of porosity. By
applying the proposed method, we first explicitly write porosity
as a function of the dry-rock elastic moduli:

ϕK
1 ¼ ϕ0ðKdry − KmatÞðKHM þ γÞ

ðKHM þ KmatÞðKdry þ γÞ ;

ϕμ
1 ¼

ϕ0ðμdry − μmatÞðμHM þ ηÞ
ðμHM þ μmatÞðμdry þ ηÞ ; (41)

and then we compute the derivatives of equations 38 and 39:

d
dϕ

KdryðϕÞ ¼
ϕ0ðKHM − KmatÞðKHM þ γÞðKmat þ γÞ

ðϕKmat þ KHMðϕ0 − ϕÞ þ ϕ0γÞ2
;

d
dϕ

μdryðϕÞ ¼
ϕ0ðμHM − μmatÞðμHM þ ηÞðμmat þ ηÞ
ðϕμmat þ μHMðϕ0 − ϕÞ þ ϕ0ηÞ2

; (42)
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and finally we obtain the PDFs of Kdry and μdry by applying equa-
tion 10:

fKdry
ðKdryÞ ¼

���� ϕ0ðKHM þ γÞðKmat þ γÞ
ðKHM − KmatÞðKdry þ γÞ2

����fϕðϕ ¼ ϕ1Þ;

fμdryðμdryÞ ¼
���� ϕ0ðμHM þ ηÞðμmat þ ηÞ
ðμHM − μmatÞðμdry þ ηÞ2

����fϕðϕ ¼ ϕ1Þ:

(43)

The same analysis could be performed with the stiff-sand model
(Gal et al., 1998), that uses a modified Hashin-Shtrikman upper
bound, resulting in an increase of elastic property values compared
to the soft-sand model. The calculations are similar to the soft-
sand case.

Inclusion model with uncertain porosity

In this section, we repeat the same exercise presented in the pre-
vious section using an inclusion model. In inclusion models, the
saturated rock is modeled as an elastic medium with holes (inclu-
sions) within it. Several models have been proposed. In this exam-
ple, we use one of the first formulations proposed by Kuster and
Toksöz (1974), based on long-wavelength first-order scattering
theory. The bulk and shear moduli, K�

KT and μ�KT, of the effective
medium are given by

ðK�
KT − KmatÞ

Kmat þ 4
3
μmat

K�
KT þ 4

3
μmat

¼
XN
i¼1

fiðK�
KT − KmatÞPi;

ðμ�KT − μmatÞ
μmat þ 1

6
μmatξ

μ�KT þ 1
6
μmatξ

¼
XN
i¼1

fiðμ�KT − μmatÞQi; (44)

where ξ ¼ ð9Kmat þ 8μmatÞ∕ðKmat þ 2μmatÞ, N is the number of in-
clusions, fi is the fraction volume of the ith inclusion, and Pi and
Qi are coefficients that depend on the geometry of the inclusion.
Kuster and Toksöz (1974) propose the analytical formulation for
different inclusion shapes, such as spheres, needles, disks, and
penny cracks. For illustration purposes, in this example we assume
spherical shapes; however, the mathematical formulation of the
probabilistic rock physics approach does not depend on these co-
efficients because they are constant with respect to the volumetric
fractions.
We assume for simplicity a single inclusion f1 ¼ ϕ (for example,

porosity filled by a single fluid phase), and we first derive the
explicit expression of K�

KT and μ�KT:

K�
KT ¼

Kmat

�
Kmat þ 4

3
μmat

�
þ 4

3
ϕP1ðK1 − KmatÞμmat

ϕP1ðKmat − K1Þ
�
Kmat þ 4

3
μmat

� ;

μ�KT ¼
μmat

�
μmat þ 1

6
μmatξ

�
þ 1

6
ϕξQ1ðμ1 − μmatÞμmat

ϕQ1ðμmat − μ1Þ þ
�
μmat þ 1

6
μmatξ

� ; (45)

where K1 and μ1 are the elastic moduli of the component of the
inclusion (for example, of the fluid) and P1 and Q1 are the coef-
ficients that describe the shape of the pore space. For spherical pores

P1¼ðKmatþ4∕3μmatÞ∕ðK1þ4∕3μmatÞ and Q1¼ðμmatþ1∕6μmatξÞ∕
ðμ1þ1∕6μmatξÞ.
Similarly to what we have done for the previous examples, we

compute the derivatives of the functions with respect to porosity
and we evaluate them in the zero of the functions. The derivatives
are

d
dϕ

K�
KTðϕÞ ¼

P1ðK1 − KmatÞ
�
Kmat þ 4

3
μmat

�
2

�
ϕP1ðKmat − K1Þ þ

�
Kmat þ 4

3
μmat

��
2
;

d
dϕ

μ�KTðϕÞ ¼
ξQ1ðμ1 − μmatÞ

�
μmat þ 1

6
μmatξ

�
2

�
ϕQ1ðμmat − μ1Þ þ

�
μmat þ 1

6
μmatξ

��
2
; (46)

and the zeros of the functions are

ϕK
1 ¼

ðK�
KT − KmatÞ

�
Kmat þ 4

3
μmat

�
P1ðK1 − KmatÞ þ

�
K�

KT þ 4
3
μmat

� ;

ϕμ
1 ¼

ðμ�KT − μmatÞ
�
μmat þ 1

6
μmatξ

�
Q1ðμ1 − μmatÞ þ

�
μ�KT þ 1

6
μmatξ

� : (47)

Finally,

fK�
KT
ðK�

KTÞ ¼
ðKmat þ 4

3
μmatÞ2

P1ðKmat − K1Þ
�
K�

KT þ 4
3
μmat

�
2
fϕðϕK

1 Þ;

fμ�
KT
ðμ�KTÞ ¼

�
μmat þ 1

6
ξμmat

�
2

Q1ðμmat − μ1Þ
�
μ�KT þ 1

6
ξμmat

�
2
fϕðϕμ

1Þ; (48)

where Kmat > K1 and μmat > μ1.

Application in multivariate domains

As described in the section “Methodology,” the method can be
applied to multiple functions of multiple random variables (equa-
tions 11 and 12). The mathematical formulation is similar to the
univariate case, but because it requires the calculation of the deter-
minant of the Jacobian of the physical model, the derivation is gen-
erally more complicated. For clarity of illustration, we show an
example with a simple model (Nur et al., 1995) based on the con-
cept of critical porosity. We chose this model for its simple analyti-
cal formulation; however, the method could be applied to any
other model.
In this example, we assume a rock with two mineralogical com-

ponents, quartz and clay. We assume to have two random variables,
porosity ϕ and clay volume c. Nur’s model provides an estimation
of the bulk and shear moduli of the dry rock as follows:

Kdry ¼ Kmat

�
1 −

ϕ

ϕ0

�
; μdry ¼ μmat

�
1 −

ϕ

ϕ0

�
; (49)
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where the elastic moduli of the matrix clearly depend on the clay
volume c. For the elastic moduli expression, we choose the Voigt
average:

Kmat ¼ cKc þ ð1 − cÞKq; μmat ¼ cμc þ ð1 − cÞμq: (50)

Different averages could be used for the matrix: Reuss, Voigt, or
Hill. The Voigt average was chosen for clarity of illustration. We
leave the computation of the derivatives to the reader, and we di-
rectly show the Jacobian matrix:

J ¼
2
4− cKcþð1−cÞKq

ϕ0
ðKc − KqÞ

�
1 − ϕ

ϕ0

�
− cμcþð1−cÞμq

ϕ0
ðμc − μqÞ

�
1 − ϕ

ϕ0

�
3
5; (51)

and the determinant is

jJj ¼ Kqμcϕ

ϕ2
0

−
Kcμqϕ

ϕ2
0

−
Kqμc
ϕ0

þ Kcμq
ϕ0

: (52)

We finally compute the real roots of the system:

ϕ̄ ¼ Kdryðμq − μcÞ þ Kqðμc − μdryÞ − Kcðμq − μdryÞ
Kqμc − Kcμq

ϕ0;

c̄ ¼ Kdryμq − μdryKq

μdryðKc − KqÞ − Kdryðμc − μqÞ
: (53)

For simplicity, we skip the algebraic computation and show the
final PDF of ðKdry; μdryÞ:

fKdry;μdryðKdry; μdryÞ

¼ 1

jJðϕ̄; c̄Þj fϕ;cðϕ̄; cÞ

¼ ϕ0

jμdryðKc − KqÞ − Kdryðμc − μqÞj
fϕ;cðϕ̄; c̄Þ; (54)

where fϕ;cðϕ̄; c̄Þ is the joint distribution of porosity and clay content
evaluated in the real roots of the model.

EXAMPLES

We show here several examples using the equations derived in the
section “Methodology.” The method can be applied to any equation
as long as the rock physics model is differentiable and the PDF of
the input random variable is parametric; i.e., it has an analytical
closed form. The last two examples show the application of the
method to models in a multivariate domain and a real case study
with well logs.

Gassmann’s equation with uncertain porosity

By following the same order of the models presented in the sec-
tion “Methodology,” the first example is the estimation of the dis-
tribution of the saturated-rock bulk modulus using Gassmann’s
equation with uncertain porosity (Figure 3).
We assume that porosity is distributed according to a Gaussian

distribution ϕ ∼ Nðμϕ; σ2ϕÞ with mean μϕ ¼ 0.20 and standard
deviation σϕ ¼ 0.05. The input PDF is shown in Figure 3a. We also
assume that Kmat, Kfl, and Kdry are constant: Kmat ¼ 30 GPa,
Kfl ¼ 2.5 GPa, and Kdry ¼ 15 GPa. This could be the case when
we have some laboratory measurements in which we can measure
with good precision the elastic moduli but the porosity measure-
ment is uncertain due to the unknown percentage of nonconnected
porosity. If these parameters are constant, the behavior of Gass-
mann’s equation (equation 13) is shown in Figure 3b. By applying

Figure 3. Estimation of the PDF of the saturated-rock bulk modulus using Gassmann’s equation with uncertain porosity: (a) input Gaussian
distribution of porosity, (b) Gassmann’s equation for saturated-rock bulk modulus as a function of porosity, (c) predicted saturated-rock bulk
modulus distribution (solid line) and Gaussian approximation (dashed line). Distributions are compared to histograms of 10,000 samples
generated through Monte Carlo simulations and are normalized by the bin size for comparison.
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equations 15 and 17, we can compute the exact analytical PDF of
the saturated-rock bulk modulus, shown in Figure 3c.
Because Gassmann’s equation is not linear, we observe that the

so-obtained PDF is not Gaussian, but it is skewed. We then compare
the PDF with the histogram of 10,000 samples obtained by Monte
Carlo simulations: First we generate 10,000 samples of porosity
from the input distribution, then we apply Gassmann’s equation,
and finally we plot the histogram of the samples of saturated-rock
bulk modulus and impose the exact PDF in equation 17. We point
out that in this example and in all the following examples, the PDFs
are normalized by the bin size to make them comparable to the his-
tograms; in other words, the shape of the PDF is preserved but the
integral of the curve is not 1, but it is equal to the area of the
histogram.
In Figure 3, we can appreciate that the output PDF exactly

matches the histogram. We can compare the exact PDF with the
approximated distribution that we can obtain from a Monte Carlo
simulation approach (Figure 3c). For this comparison, we reesti-
mate the output PDF from the 10,000 Monte Carlo samples: In par-
ticular, we assume that the output distribution is Gaussian and
estimate its parameters from the Monte Carlo samples. Due to
the skewness of the output distribution, the Gaussian approximation
does not match the exact PDF. The mode is shifted to a value (i.e.,
the empirical mean) higher than the actual mode of the histogram,
and the Gaussian PDF also shows nonzero likelihood values for
bulk moduli less than 17 GPa, even though the Monte Carlo histo-
gram does not contain these values. These problems are not present
in the exact PDF.
In the second example (Figure 4), we still assume the same poros-

ity distribution as in the previous example (Figure 4a), and we as-
sume that Kmat and Kfl are constant, but we now use a rock physics
model (Nur’s model) for Kdry (equation 18) with critical porosity
ϕ0 ¼ 0.42. By applying equations 19 and 20, we estimate the exact
PDF of the saturated-rock bulk modulus. The results are shown in
Figure 4: In this case, Gassmann’s equation has a more linear
behavior (due to the linearization of the dry-bulk modulus with re-
spect to porosity) and the output PDF as a consequence shows a

Gaussian behavior. The approximated Gaussian PDF obtained from
the Monte Carlo simulation is in this case a good approximation.
The third example shows the estimated PDF of the dry-rock bulk

modulus with uncertain porosity when the bulk moduli of matrix,
fluid, and saturated rock are known. This could be the case when we
can obtain reliable values of P- and S-wave velocities and of density
from well logs, and we can compute the saturated-rock bulk modu-
lus from them, but the porosity measurements are uncertain, and we
want to account for this uncertainty in the estimation of the dry-rock
bulk modulus. The dry-bulk modulus can be computed using the
inverse Gassmann’s equation (equation 14). We assume that poros-
ity is distributed according to a Gaussian distribution ϕ ∼ Nðμϕ; σ2ϕÞ
with mean μϕ ¼ 0.20 and standard deviation σϕ ¼ 0.04. The input
PDF is shown in Figure 5a. We also assume that Kmat, Kfl, and Ksat

are constant: Kmat ¼ 30 GPa, Kfl ¼ 2.5 GPa, and Ksat ¼ 18 GPa.
By applying equations 21 and 23, we can compute the exact PDF of
Kdry, which is shown in Figure 5c. Once again, we compare the so-
obtained PDF with the Gaussian approximation, which does not
match the exact PDF. The Gaussian approximation is not correct
in this case because the mode is lower by almost 1 GPa than the
histogram mode. The distribution shows nonzero likelihood values
for bulk moduli greater than 17 GPa, whereas the exact PDF cor-
rectly assigns a likelihood close to zero.

Gassmann’s equation with uncertain saturation

We then perform a similar analysis on Gassmann’s equation as-
suming uncertain water saturation. We assume for simplicity that
the fluid consists of two phases: water and gas, but the method
could be applied to different saturation scenarios (oil-water or
gas-oil-water). In the next examples, we assume that Kmat, Kdry,
and ϕ are known constant values: Kmat ¼ 30 GPa, Kdry ¼
15 GPa, and ϕ ¼ 0.3. We also assume that the bulk moduli
of the fluid components are constant: Kw ¼ 2.5 GPa and
Kg ¼ 0.2 GPa. We show here four examples: patchy saturation
where water saturation is distributed according to a beta distribu-
tion, homogeneous saturation where water saturation is distributed
according to a beta distribution, patchy saturation where water

Figure 4. Estimation of the PDF of the saturated-rock bulk modulus using Nur’s model and Gassmann’s equation with uncertain porosity:
(a) input Gaussian distribution of porosity, (b) Nur’s model and Gassmann’s equation for saturated-rock bulk modulus as a function of porosity,
and (c) predicted saturated-rock bulk modulus distribution (solid line) and Gaussian approximation (dashed line). Distributions are compared
to histograms of 10,000 samples generated through Monte Carlo simulations and are normalized by the bin size for comparison.
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saturation is distributed according to a uniform distribution, and
homogeneous saturation where water saturation is distributed ac-
cording to a uniform distribution.
We first assume that the fluid distribution is patchy (equation 24),

and we assume a beta distribution for water saturation sw∼
Bð0.1; 0.1Þ. The input distribution of sw is shown in Figure 6a where
it is normalized and compared to a histogram of 10,000 samples:
The PDF shows as expected two peaks in 0 and 1. We then apply
Gassmann’s equation (Figure 6b) and compute the exact PDF of the
saturated-rock bulk modulus using equations 25 and 27. The PDF of
Ksat is shown in Figure 6c. The model is almost linear for the patchy
saturation assumption (linear average in equation 24), and the

output distribution preserves the bimodal feature at the extremes
of the interval range. In this case, we do not compare the output
PDF with the Gaussian approximation because the behavior of
the saturated-rock bulk modulus cannot be described by a Gaussian
distribution.
Under the same assumption for the probability distribution of

water saturation, we show the same example but with a homo-
geneous fluid distribution (equation 28). The output distribution
is obtained by applying equations 29 and 30 (the explicit equation
for a beta distribution is written in equation 31). The results are
shown in Figure 7. In Figure 7c, we observe that the output distri-
bution is still similar to a beta, but it is not symmetric even though

Figure 5. Estimation of the PDF of the dry-rock bulk modulus using Gassmann’s equation with uncertain porosity: (a) input Gaussian dis-
tribution of porosity, (b) Gassmann’s equation for dry-rock bulk modulus as a function of porosity, and (c) predicted dry-rock bulk modulus
distribution (solid line) and Gaussian approximation (dashed line). Distributions are compared to histograms of 10,000 samples generated
through Monte Carlo simulations and are normalized by the bin size for comparison.

Figure 6. Estimation of the PDF of the saturated-rock bulk modulus using Gassmann’s equation with uncertain saturation (patchy saturation):
(a) input beta distribution of water saturation, (b) Gassmann’s equation for saturated-rock bulk modulus as a function of water saturation, and
(c) predicted saturated-rock bulk modulus distribution. Distributions are compared to histograms of 10,000 samples generated through Monte
Carlo simulations and are normalized by the bin size for comparison.
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the initial distribution is symmetric. In the output, lower values of
the bulk modulus are more likely than higher values due to the non-
linear behavior of Gassmann’s equation for homogeneous fluid dis-
tribution (Figure 7b).
We now repeat the same exercise but assume a uniform distribu-

tion for water saturation between 0 and 1. In Figure 8, we show the
results for patchy saturation, whereas in Figure 9, we show the re-
sults for homogeneous saturation. In both cases, the output PDF
exactly matches the corresponding histogram (Figures 8c and 9c).

Raymer’s model with uncertain porosity

As described in the section “Methodology,” the proposed method
is not limited to fluid substitution problems. It can be applied to any

rock physics model. In the next two examples, we apply the pro-
posed method to an empirical model (Raymer’s equation) and to a
theoretical model (soft-sand model).
Raymer’s model (equation 33) is an empirical equation quadratic

in porosity, even though the behavior is almost linear in the usual
porosity range ([0, 0.37]). We apply the proposed method to com-
pute the PDF of P-wave velocity with uncertain porosity. We as-
sume that the P-wave velocity of the matrix and the P-wave
velocity of the fluid are constant, in our example, Vmat

P ¼
5000 m∕s and Vfl

P ¼ 1500 m∕s. We assume that porosity ϕ is dis-
tributed according to a Gaussian distribution ϕ ∼ Nðμϕ; σ2ϕÞ with
mean μϕ ¼ 0.20 and standard deviation σϕ ¼ 0.05. By applying
equations 34 and 36, we estimate the exact PDF of VP. The initial
distribution of porosity ϕ is shown in Figure 10a, the rock physics

Figure 7. Estimation of the PDF of the saturated-rock bulk modulus using Gassmann’s equation with uncertain saturation (homogeneous
saturation): (a) input beta distribution of water saturation, (b) Gassmann’s equation for saturated-rock bulk modulus as a function of water
saturation, and (c) predicted saturated-rock bulk modulus distribution. Distributions are compared to histograms of 10,000 samples generated
through Monte Carlo simulations and are normalized by the bin size for comparison.

Figure 8. Estimation of the PDF of the saturated-rock bulk modulus using Gassmann’s equation with uncertain saturation (patchy saturation):
(a) input uniform distribution of water saturation, (b) Gassmann’s equation for saturated-rock bulk modulus as a function of water saturation,
and (c) predicted saturated-rock bulk modulus distribution. Distributions are compared to histograms of 10,000 samples generated through
Monte Carlo simulations and are normalized by the bin size for comparison.
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model in Figure 10b, and the output distribution of VP in Figure 10c.
Because the initial distribution is Gaussian and the model is almost
linear, the output PDF is approximately Gaussian.
Similarly, we apply the same approach to Raymer-Dvorkin’s VS

prediction model (equation 37) under the same porosity assumption
ϕ ∼ Nð0.2; 0.052Þ and assume a constant S-wave velocity of the
matrix Vmat

S ¼ 2500 m∕s. The results are shown in Figure 11
and show a Gaussian linear behavior similar to what we observed
for VP.

Soft-sand model with uncertain porosity

This example is related to the soft-sand model in which we aim to
estimate the PDF of the dry-rock elastic moduli with uncertain

porosity using Hertz-Mindlin contact theory and Hashin-Shtrikman
modified bounds (equations 38 and 39, respectively, for bulk and
shear moduli). We assume that all the parameters in equation 40 are
constant: Kmat ¼ 30 GPa, μmat ¼ 12 GPa, KHM ¼ 3 GPa, μHM ¼
1.5 GPa, and ϕ0 ¼ 0.42. As in the previous example, porosity is
distributed according to a Gaussian distribution ϕ ∼ Nðμϕ; σ2ϕÞ with
mean μϕ ¼ 0.20 and standard deviation σϕ ¼ 0.05.
The output PDFs of the dry-rock elastic moduli are computed by

applying equations 41 and 43. Differently from the previous exam-
ple, the rock physics model (equations 38 and 39) in this case is
nonlinear (Figures 12b and 13b); therefore, we expect a non-
Gaussian behavior in the output PDFs of Kdry and μdry. The exact
PDF of Kdry is shown in Figure 12c, and the exact PDF of μdry is
shown in Figure 13c. Both PDFs show log-normal behavior, and

Figure 9. Estimation of the PDF of the saturated-rock bulk modulus using Gassmann’s equation with uncertain saturation (homogeneous
saturation): (a) input uniform distribution of water saturation, (b) Gassmann’s equation for saturated-rock bulk modulus as a function of water
saturation, and (c) predicted saturated-rock bulk modulus distribution. Distributions are compared to histograms of 10,000 samples generated
through Monte Carlo simulations and are normalized by the bin size for comparison.

Figure 10. Estimation of the PDF of P-wave velocity using Raymer’s equation with uncertain porosity: (a) input Gaussian distribution of
porosity, (b) Raymer’s equation for P-wave velocity as a function of porosity, and (c) predicted P-wave velocity distribution. Distributions are
compared to histograms of 10,000 samples generated through Monte Carlo simulations and are normalized by the bin size for comparison.
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they perfectly match the histograms 10,000 samples generated
through Monte Carlo simulations.

Inclusion model with uncertain porosity

The last example for the univariate case focuses on the estimation
of the PDF of the dry-rock elastic moduli with uncertain porosity
using the inclusion model proposed by Kuster and Toksöz (1974)
shown in equations 44 (implicit formulation) and 45 (explicit for-
mulation). We assume a rock matrix with the following properties:
Kmat ¼ 30 GPa, μmat ¼ 12 GPa, and one inclusion represented by
pore space with spherical pores filled by water. Therefore, in
equation 45, N ¼ 1 and f1 ¼ ϕ and because the fluid within the
inclusion is water, the bulk modulus of the inclusion is
K1 ¼ 2.25 GPa, and the shear modulus is μ1 ¼ 0 GPa. Porosity

is distributed according to a Gaussian distribution ϕ ∼ Nðμϕ; σ2ϕÞ
with mean μϕ ¼ 0.20 and standard deviation σϕ ¼ 0.05.
The output PDFs of the dry-rock elastic moduli are computed

by applying equations 47 and 48, and the results are shown in
Figures 14 and 15. The rock physics model (equation 45) is almost
linear (Figures 14b and 15b), and the output PDFs of K�

KT and μ�KT
approximately preserve the same distribution shape of the porosity
distribution. The exact PDF of K�

KT is shown in Figure 14c, and the
exact PDF of K�

KT is shown in Figure 15c and are compared to the
Monte Carlo histogram.

Application in multivariate domains

This example shows the application of the method in a multivari-
ate case. In most of the cases in fact, it is not realistic to assume that

Figure 11. Estimation of the PDF of S-wave velocity using Raymer-Dvorkin’s equation with uncertain porosity: (a) input Gaussian distri-
bution of porosity, (b) Raymer-Dvorkin’s equation for S-wave velocity as a function of porosity, and (c) predicted S-wave velocity distribution.
Distributions are compared to histograms of 10,000 samples generated through Monte Carlo simulations and are normalized by the bin size for
comparison.

Figure 12. Estimation of the PDF of dry-rock bulk modulus using soft-sand model with uncertain porosity: (a) input Gaussian distribution of
porosity, (b) modified Hashin-Shtrikman lower bound for dry-rock bulk modulus as a function of porosity, and (c) predicted dry-rock bulk
modulus distribution. Distributions are compared to histograms of 10,000 samples generated through Monte Carlo simulations and are nor-
malized by the bin size for comparison.
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only one variable is uncertain. The mathematical formulation in
multivariate domains is more complicated; however, for purposes
of illustration, we show the application of the method with Nur’s
model, which is a model of two functions. In our example, we as-
sume two random variables, porosity and clay volume, jointly dis-
tributed according to a bivariate Gaussian distribution with mean
(0.20, 0.40), standard deviation (0.03, 0.05), and correlation
−0.8. When the distribution is skewed, lognormal or closed-skew
Gaussian distributions (Karimi et al., 2010) can be used to describe
the nonsymmetric behavior. When the distribution is not unimodal,
Gaussian mixture models (i.e., linear combination of Gaussian dis-
tributions; see Grana and Della Rossa, 2010) can be used to describe
the multimodal behavior.

We then apply Nur’s model to compute the posterior distribution
of two variables: the bulk and shear moduli of the dry rock. We
assume that the rock is made by two mineralogical components:
quartz and clay with the following properties: Kq ¼ 36 GPa,
μq ¼ 45 GPa, Kc ¼ 21 GPa, μc ¼ 7 GPa. The mixture of the min-
eralogical components is described using the Voigt average.
In Figure 16, we show the joint distribution of porosity and clay

content with the corresponding marginal distributions, the analyti-
cal distribution of bulk and shear moduli of the dry rock with the
corresponding marginal distributions, and the comparison with the
simulated Monte Carlo samples. The comparison with the approxi-
mated Gaussian PDF extracted from the Monte Carlo simulation is
shown in Figure 17. If we assume a bivariate Gaussian PDF to

Figure 13. Estimation of the PDF of dry-rock shear modulus using soft-sand model with uncertain porosity: (a) input Gaussian distribution of
porosity, (b) modified Hashin-Shtrikman lower bound for dry-rock shear modulus as a function of porosity, and (c) predicted dry-rock shear
modulus distribution. Distributions are compared to histograms of 10,000 samples generated through Monte Carlo simulations and are nor-
malized by the bin size for comparison.

Figure 14. Estimation of the PDF of water saturated-rock bulk modulus using an inclusion model with uncertain porosity: (a) input Gaussian
distribution of porosity, (b) Kuster-Toksöz model for the water-saturated-rock bulk modulus as a function of porosity, and (c) predicted water
saturated-rock bulk modulus distribution. Distributions are compared to histograms of 10,000 samples generated through Monte Carlo sim-
ulations and are normalized by the bin size for comparison.

Approach to rock physics modeling D137

D
ow

nl
oa

de
d 

07
/2

5/
17

 to
 6

9.
14

6.
98

.1
59

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/



approximate the distribution of Monte Carlo samples, we honor
the correlation of the exact PDF but not the skewness of the
distribution.

Application to well logs

We finally present the application of the methodology to well-log
data analysis. The well logs in this example have been measured
in a well of a reservoir with a complex mineralogical composition.
The main reservoir is mainly a shaley reservoir with a variable
percentage of muscovite and calcite at different levels. The reser-

voir fluid phases are water and gas. Well-log data are shown in
Figure 18.
In this section, we propose a one-way sensitivity analysis of the

uncertainty in the petrophysical curves performed in formation
evaluation analysis and the effect on rock physics model predic-
tions. The rock physics model chosen for this study is Raymer’s
model for P-wave velocity prediction, Raymer-Dvorkin’s model
for S-wave velocity prediction, and a linear average for density. This
model was chosen for the high linear correlation between porosity
and elastic properties. In the following paragraphs, we analyze the
effect of uncertainty in porosity and saturation.

Figure 15. Estimation of the PDF of water saturated-rock shear modulus using an inclusion model with uncertain porosity: (a) input Gaussian
distribution of porosity, (b) Kuster-Toksöz model for water saturated-rock shear modulus as a function of porosity, and (c) predicted water
saturated-rock shear modulus distribution. Distributions are compared to histograms of 10,000 samples generated through Monte Carlo sim-
ulations and are normalized by the bin size for comparison.

Figure 16. Estimation of the PDF of dry-rock bulk and shear modulus using Nur’s critical porosity model with uncertain porosity and clay
volume: (a) input bivariate Gaussian distribution of porosity and clay volume with marginal distributions and (b) predicted distribution of dry-
rock bulk and shear moduli. Black crosses represent 1000 Monte Carlo simulated samples. The comparison between the analytical bivariate
distribution and the 2D histogram of Monte Carlo simulated samples in shown in panels (c and d).
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In Figure 19, we show the application for uncertainty propagation
in porosity. For each sample of the well log included in the interval
corresponding to the main reservoir level, we assumed a Gaussian
distribution with mean equal to the actual value of the porosity
curve and a constant standard deviation equal to 0.03. We then ap-
plied the presented methodology to the so-computed distributions
along the well log: Density is calculated using a linear average with
respect to porosity, P-wave velocity is estimated using Raymer’s
model, and S-wave velocity is computed using Raymer-Dvorkin’s
model. The local PDFs are shown in Figure 19d–19f.
A similar analysis has been performed for water saturation

(Figure 20). In this case, we assumed a uniform distribution with
constant support equal to 0.5, centered around the actual value of
the saturation curve and truncated to avoid nonphysical values out-
side the range [0, 1]. The same model described above has been
applied with the proposed probabilistic approach, and the so-ob-
tained PDFs are shown in Figure 20. For simplicity of illustration,
in Figure 20 we only showed the support of the distributions rather
than the full PDFs.

DISCUSSION

The methodology presented in this paper contains the exact prob-
abilistic formulation of the posterior distribution of the variable pre-
dicted by a rock physics model in which one of the input variables is
uncertain. The probabilistic formulation can be complicated be-
cause it requires the solution of a nonlinear equation and the deriva-
tive of the rock physics model. However, when we assume that the
other properties that appear in the rock physics model are constant,
the analytical derivation is straightforward, as shown in several ex-
amples in the section “Methodology.”When two or more properties
are random variables (i.e., uncertain), the input distribution can be
described by a joint distribution (as shown in the multivariate ex-
ample) to describe the distribution of the input variables together
with the correlation between these variables. The derivation of
the output distribution requires the solution of a system of equations
(equation 11) and the computation of partial derivatives (equa-
tion 12), which could be complicated, especially for highly nonlin-
ear models. On the other hand, if the joint output distribution can be

Figure 17. Comparison between exact analytical PDF (c) with Monte Carlo simulation (a) and Gaussian approximated PDF (b).

Figure 18. Well-log data: (a) porosity, (b) mineralogical fraction (quartz in black, clay in gray, and silt in white), (c) water saturation, (d) den-
sity, (e) P-wave velocity, and (f) S-wave velocity.
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derived, the correlation of rock physics predictions can be estimated
without approximations.
The method consists of three steps: the probabilistic description

of the input random variable, the computation of the inverse func-
tion and of the derivative of the rock physics model, and the cal-
culation of the PDF of the function of the initial random variable.
The PDF of the input random variable can be estimated from ac-

tual measurements or data (well logs or laboratory measures) or as-
sumed based on geologic information, nearby fields, or theoretical
models. The key point to describe the PDF of the input variable is
the assumption related to the shape of the distribution. If we know
the most likely value and we have a measure of the uncertainty of
this value, the Gaussian distribution can be a good choice. For ex-
ample, if we know that the porosity of the rock is likely to be 0.2 but
this value is uncertain and the range of possible value is between 0.1
and 0.3, then we can use a Gaussian distribution with mean equal to

0.2 and standard deviation equal 0.03. However, it is important to
point out that the Gaussian distribution is defined and positive for all
the real values, which means that the probability of obtaining values
less than 0 or greater than 1 is nonzero. If the standard deviation is
small enough, these values are negligible, and we can still use the
Gaussian PDF. Otherwise, we should truncate the tails of the Gaus-
sian distribution, set the PDF values outside the physical range
equal to 0, and normalize the PDF to make the integral equal to
1. To avoid truncations in the input and output distributions, instead
of a Gaussian distribution, we could assume a triangular distribu-
tion, which by definition is zero outside of the range. In our exam-
ple, the triangular distribution would be defined in the interval [0.1,
0.3] and symmetric with mode 0.2.
Some properties, for example, saturations and permeability, can-

not be described by a Gaussian distribution. For permeability, it is a
common practice to use the logarithm of the permeability rather

Figure 19. Well-log data application: uncertainty propagation from porosity distributions through Raymer-Dvorkin’s model for velocities and
linear average for density: (a) porosity (porosity Gaussian distributions are shown in gray in the reservoir zone), (b) mineralogical fraction
(quartz in black, clay in gray, and silt in white), (c) water saturation, (d) density, (e) P-wave velocity, and (f) S-wave velocity. The PDFs of the
rock physics model predictions are shown in gray.

Figure 20. Well-log data application: uncertainty propagation from saturation distributions through Raymer-Dvorkin’s model for velocities
and linear average for density: (a) porosity, (b) mineralogical fraction (quartz in black, clay in gray, and silt in white), (c) water saturation
(saturation uniform distributions are shown in gray in the reservoir zone), (d) density, (e) P-wave velocity, and (f) S-wave velocity. The PDFs of
the rock physics model predictions are shown in gray.
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than the permeability. Therefore, we can use a Gaussian distribution
for the logarithm of the permeability, which implies that permeabil-
ity is distributed according to a log-normal distribution. For satu-
ration, the PDF is generally more complicated to describe by
parametric distributions for different reasons. First, saturation val-
ues are difficult to measure, and the uncertainty is generally high
especially for patchy saturation. In this case, a uniform distribution
can be the best choice because there are no assumptions on the
shape of the distribution and all the values in the saturation range
have the same likelihood value. Then, most of the measurements,
especially for homogeneous saturation, show that it is unlikely to
observe a mixture of 50% water and 50% hydrocarbon; therefore,
the distribution often shows two peaks close to 0% and 100%. In
other words, the distribution looks like a uniform distribution with
two probability peaks at the extremes of the interval. This distribu-
tion can be analytically described with a beta distribution, and it can
be a good choice for homogeneous fluid distribution scenarios.
The presented method is a valid alternative to Monte Carlo sim-

ulations. As a matter of fact, Monte Carlo simulation is a useful tool
to generate training data set. In rock physics, this tool is commonly
used because the rock physics models do not contain complicated
mathematical operations and the application of the forward model is
generally straightforward. Therefore, the computational cost of a
Monte Carlo simulation is not large. However, to approximate
the correct distribution, a large number of samples is still required
(for instance, in the comparison in our examples, we used 10,000
samples). Another limitation is that Monte Carlo simulations only
provide a training data set. They do not provide an analytical ex-
pression for the corresponding PDF. We showed in the first exam-
ples that if we want to estimate the posterior distribution from the
training data set without knowing the correct shape of the distribu-
tion, we then have to make assumptions, for example, the Gaussian
distribution of the posterior, and the result might not match the data
exactly as the proposed analytical method does. The main advan-
tage of this method is that the expression of the PDF of the predic-
tions is analytical and can be used in probabilistic inversion
workflows: Bayesian elastic inversion and Bayesian petrophysical
inversion, for example. On the other hand, the method includes sev-
eral mathematical (analytical) computations to derive the closed
form of the posterior. The examples show that if the rock physics
model is a function of only one random variable, then the analytical
derivation can be achieved in three steps. In one of the examples, the
Gassmann’s fluid equation with uncertain porosity and uncertain
dry-rock bulk modulus, we assumed that two variables where uncer-
tain and we used another rock physics model to describe one of these
two variables (dry-rock bulk modulus) as a function of the other one
(porosity). This is often the case in rock physics because most of
the presented models link rock properties to elastic properties and
different equations can be used to express some of the properties
involved in the model as a function of the initial rock properties.
For example, we expressed the fluid bulk modulus as a function
of water saturation. Density could be written in terms of porosity,
and the matrix bulk modulus could be described as a function of
the clay content or any other mineralogic fraction of the rock.
If we want to study the effect of the uncertainty of two different

properties, for example, saturation and porosity, we first should
study the effect of the two properties independently and then study
the combined effect. A probabilistic formulation for functions of
two random variables has been presented in the section “Method-

ology” (following the probabilistic formulation in Papoulis, 1984),
and it can be easily extended to the multivariate case with more than
two variables. However, we want to point out that the analytical
expression can become very complicated due to the presence of
multiple partial derivatives. Approximations, based on Taylor’s ex-
pansions, are available as well. This formulation accounts for the
correlation between input variables and also the correlation between
output predictions. For example, saturation and porosity can be as-
sumed independent, whereas clay content and porosity are generally
negatively correlated (the higher the clay content, the lower the
porosity) as we can observe in shaley sand dispersed models, for
example (see Mavko et al., 2009). This correlation is described
by joint distributions as shown in the multivariate example.
If we want to use the statistical rock physics model in inverse

problems, such as petrophysical estimation of rock properties,
the analytical formulation can provide an advantage. When the ana-
lytical formulation is too complicated, Monte Carlo simulations
could be used to approximate the output distribution. The trade-
off between the analytical formulation of the exact solution versus
numerical approximations of complicated analytical formulations
should be established, case by case, depending on the goal of
the application, the uncertainty in the input data, and the complexity
of the rock physics model.
We finally point out that the methodology has been presented for

simplicity of illustration assuming an initial distribution with given
mean and variance. However, it can be applied to several distribu-
tions with variable means and variances. For example, if we want to
apply the method to a well log that is supposed to be uncertain, we
can create a set of distributions with locally varying mean (and if
necessary, variance) and apply the methodology point by point to
obtain a set of distributions that describe the uncertainty of the pre-
dictions obtained using a rock physics model from each sample of
the initial log.

CONCLUSION

We presented a new methodology for uncertainty quantification
in rock physics model predictions. The method is a probabilistic
approach to the forward rock physics model, which provides the
exact PDF of the rock physics model predictions given an uncertain
input, for example, uncertain porosity in velocity prediction or un-
certain saturation in fluid substitution. The method provides a rig-
orous probabilistic workflow that can be applied to any rock physics
model, with any input parametric distribution, and it allows us to
overcome the Gaussian assumption generally used in Monte Carlo
simulations. The PDF of the rock physics model can then be used in
inversion workflows to estimate the rock property distributions and
the rock property most likely values, given the elastic property dis-
tributions. The methodology has been illustrated with different ex-
amples in which we used empirical and theoretical rock physics
models and different parametric distributions to describe the rock
and fluid property behavior.
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APPENDIX A

MATHEMATICAL DERIVATION

In this appendix, we show the derivation of equations 16 and 17.
We first derive equation 16 by using the rule of the derivative of

the quotient:

d
dx

fðxÞ
gðxÞ ¼

f 0ðxÞgðxÞ − fðxÞg 0ðxÞ
gðxÞ2 : (A-1)

By applying this rule to equation 13, we obtain
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�
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2

¼−
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2
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¼ KmatKflðKdry−KmatÞ2ðKfl−KmatÞ
½KflKdry−KmatðϕKmat−ϕKflþKflÞ�2

; (A-2)

which concludes the derivation of equation 16.

We then find the real root of equation 13 as follows:

Ksat − Kdry −

�
1 − Kdry

Kmat

�
2

ϕ
Kfl

þ 1−ϕ
Kmat

− Kdry

K2
mat

¼ 0; (A-3)

which provides the single solution ϕ1:

ϕ1 ¼
KflðKmat − KdryÞðKmat − KsatÞ
KmatðKmat − KflÞðKsat − KdryÞ

(A-4)

for every value Ksat.
By combining equations A-2 and A-4, and by assuming that

porosity is distributed according to a Gaussian distribution ϕ∼
Nðμϕ; σ2ϕÞ with mean μϕ and variance σ2ϕ, we obtain

fKsat
ðKsatÞ¼

KflðKdry−KmatÞ2
KmatðKmat−KflÞðKdry−KsatÞ2

1ffiffiffiffiffiffiffiffiffiffi
2πσ2ϕ

q e
−
ðϕ1−μϕÞ2

2σ2
ϕ :

(A-5)

REFERENCES

Avseth, P., T. Mukerji, A. Jørstad, G. Mavko, and T. Veggeland, 2001, Seis-
mic reservoir mapping from 3-D AVO in a North Sea turbidite system:
Geophysics, 66, 1157–1176, doi: 10.1190/1.1487063.

Avseth, P., T. Mukerji, and G. Mavko, 2005, Quantitative seismic interpre-
tation: Cambridge University Press.

Bachrach, R., 2006, Joint estimation of porosity and saturation using sto-
chastic rock physics modeling: Geophysics, 71, no. 5, O53–O63, doi:
10.1190/1.2235991.

Bosch, M., C. Carvajal, J. Rodrigues, A. Torres, M. Aldana, and J. Sierra,
2009, Petrophysical seismic inversion conditioned to well-log data: Meth-
ods and application to a gas reservoir: Geophysics, 74, no. 2, O1–O15,
doi: 10.1190/1.3043796.

Bosch, M., T. Mukerji, and E. F. Gonzalez, 2010, Seismic inversion for res-
ervoir properties combining statistical rock physics and geostatistics: A
review: Geophysics, 75, no. 5, A165–A176, doi: 10.1190/1.3478209.

Brie, A., F. Pampuri, A. F. Marsala, and O. Meazza, 1995, Shear sonic in-
terpretation in gas bearing sands: Presented at SPE Annual Technical
Conference and Exhibition.

Buland, A., O. Kolbjørnsen, R. Hauge, O. Skjæveland, and K. Duffaut,
2008, Bayesian lithology and fluid prediction from seismic prestack data:
Geophysics, 73, no. 3, C13–C21, doi: 10.1190/1.2842150.

Buland, A., and H. Omre, 2003, Bayesian linearized AVO inversion:
Geophysics, 68, 185–198, doi: 10.1190/1.1543206.

Doyen, P., 1988, Porosity from seismic data: A geostatistical approach:
Geophysics, 53, 1263–1275, doi: 10.1190/1.1442404.

Doyen, P., 2007, Seismic reservoir characterization: EAGE.
Dvorkin, J., 2008, Yet another VS equation: Geophysics, 73, no. 2, E35–

E39, doi: 10.1190/1.2820604.
Dvorkin, J., and A. Nur, 1996, Elasticity of high-porosity sandstones:

Theory for two North Sea datasets: Geophysics, 61, 1363–1370, doi:
10.1190/1.1444059.

Eidsvik, J., P. Avseth, H. Omre, T. Mukerji, and G. Mavko, 2004, Stochastic
reservoir characterization using prestack seismic data: Geophysics, 69,
978–993, doi: 10.1190/1.1778241.

Gal, D., J. Dvorkin, and A. Nur, 1998, A physical model for porosity re-
duction in sandstones: Geophysics, 63, 454–459, doi: 10.1190/1
.1444346.

Gallop, J., 2006, Facies probability from mixture distributions with non-
stationary impedance errors: 76th Annual International Meeting, SEG,
Expanded Abstracts, 1801–1805.

González, E. F., T. Mukerji, and G. Mavko, 2008, Seismic inversion com-
bining rock physics and multiple-point geostatistics: Geophysics, 73,
no. 1, R11–R21, doi: 10.1190/1.2803748.

Grana, D., and E. Della Rossa, 2010, Probabilistic petrophysical-properties
estimation integrating statistical rock physics with seismic inversion:
Geophysics, 75, no. 3, O21–O37, doi: 10.1190/1.3386676.

D142 Grana

D
ow

nl
oa

de
d 

07
/2

5/
17

 to
 6

9.
14

6.
98

.1
59

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/

http://dx.doi.org/10.1190/1.1487063
http://dx.doi.org/10.1190/1.1487063
http://dx.doi.org/10.1190/1.1487063
http://dx.doi.org/10.1190/1.2235991
http://dx.doi.org/10.1190/1.2235991
http://dx.doi.org/10.1190/1.2235991
http://dx.doi.org/10.1190/1.3043796
http://dx.doi.org/10.1190/1.3043796
http://dx.doi.org/10.1190/1.3043796
http://dx.doi.org/10.1190/1.3478209
http://dx.doi.org/10.1190/1.3478209
http://dx.doi.org/10.1190/1.3478209
http://dx.doi.org/10.1190/1.2842150
http://dx.doi.org/10.1190/1.2842150
http://dx.doi.org/10.1190/1.2842150
http://dx.doi.org/10.1190/1.1543206
http://dx.doi.org/10.1190/1.1543206
http://dx.doi.org/10.1190/1.1543206
http://dx.doi.org/10.1190/1.1442404
http://dx.doi.org/10.1190/1.1442404
http://dx.doi.org/10.1190/1.1442404
http://dx.doi.org/10.1190/1.2820604
http://dx.doi.org/10.1190/1.2820604
http://dx.doi.org/10.1190/1.2820604
http://dx.doi.org/10.1190/1.1444059
http://dx.doi.org/10.1190/1.1444059
http://dx.doi.org/10.1190/1.1444059
http://dx.doi.org/10.1190/1.1778241
http://dx.doi.org/10.1190/1.1778241
http://dx.doi.org/10.1190/1.1778241
http://dx.doi.org/10.1190/1.1444346
http://dx.doi.org/10.1190/1.1444346
http://dx.doi.org/10.1190/1.1444346
http://dx.doi.org/10.1190/1.2803748
http://dx.doi.org/10.1190/1.2803748
http://dx.doi.org/10.1190/1.2803748
http://dx.doi.org/10.1190/1.3386676
http://dx.doi.org/10.1190/1.3386676
http://dx.doi.org/10.1190/1.3386676


Gunning, J., and M. Glinsky, 2007, Detection of reservoir quality using
Bayesian seismic inversion: Geophysics, 72, no. 3, R37–R49, doi: 10
.1190/1.2713043.

Hashin, Z., and S. Shtrikman, 1963, A variational approach to the elastic
behavior of multiphase materials: Journal of the Mechanics and Physics
of Solids, 11, 127–140, doi: 10.1016/0022-5096(63)90060-7.

Karimi, O., H. Omre, and M. Mohammadzadeh, 2010, Bayesian closed-
skew Gaussian inversion of seismic AVO data for elastic material proper-
ties: Geophysics, 75, no. 1, R1–R11, doi: 10.1190/1.3299291.

Kuster, G. T., and M. N. Toksöz, 1974, Velocity and attenuation of seismic
waves in two-phase media: Part I. Theoretical formulations: Geophysics,
39, 587–606, doi: 10.1190/1.1440450.

Larsen, A. L., M. Ulvmoen, H. Omre, and A. Buland, 2006, Bayesian lith-
ology/fluid prediction and simulation on the basis of a Markov-chain prior
model: Geophysics, 71, no. 5, R69–R78, doi: 10.1190/1.2245469.

Mavko, G., C. Chan, and T. Mukerji, 1995, Fluid substitution: Estimating
changes in VP without knowing VS: Geophysics, 60, 1750–1755, doi: 10
.1190/1.1443908.

Mavko, G., and T. Mukerji, 1998, A rock physics strategy for quantifying
uncertainty in common hydrocarbon indicators: Geophysics, 63, 1997–
2008, doi: 10.1190/1.1444493.

Mavko, G., T. Mukerji, and J. Dvorkin, 2009, The rock physics handbook:
Cambridge University Press.

Mukerji, T., A. Jørstad, P. Avseth, G. Mavko, and J. R. Granli, 2001,
Mapping litho-facies and pore-fluid probabilities in a North Sea reservoir:
Seismic inversions and statistical rock physics: Geophysics, 66, 988–
1001, doi: 10.1190/1.1487078.

Nur, A., G. Mavko, J. Dvorkin, and D. Gal, 1995, Critical porosity: The key
to relating physical properties to porosity in rocks: 65th Annual
International Meeting, SEG, Expanded Abstracts, 878–881.

Papoulis, A., 1984, Probability, random variables and stochastic processes:
McGraw-Hill.

Raymer, L. L., E. R. Hunt, and J. S. Gardner, 1980, An improved sonic
transit time-to-porosity transform: Presented at 21st Annual Logging
Symposium.

Rimstad, K., and H. Omre, 2010, Impact of rock-physics depth trends and
Markov random fields on hierarchical Bayesian lithology/fluid prediction:
Geophysics, 75, no. 4, R93–R108, doi: 10.1190/1.3463475.

Spikes, K., T. Mukerji, J. Dvorkin, and G. Mavko, 2008, Probabilistic
seismic inversion based on rock physics models: Geophysics, 72,
no. 5, R87–R97, doi: 10.1190/1.2760162.

Ulvmoen, M., and H. Omre, 2010, Improved resolution in Bayesian
lithology/fluid inversion from prestack seismic data and well observa-
tions: Part 1 — Methodology: Geophysics, 75, no. 2, R21–R35, doi:
10.1190/1.3294570.

Approach to rock physics modeling D143

D
ow

nl
oa

de
d 

07
/2

5/
17

 to
 6

9.
14

6.
98

.1
59

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/

http://dx.doi.org/10.1190/1.2713043
http://dx.doi.org/10.1190/1.2713043
http://dx.doi.org/10.1190/1.2713043
http://dx.doi.org/10.1016/0022-5096(63)90060-7
http://dx.doi.org/10.1016/0022-5096(63)90060-7
http://dx.doi.org/10.1190/1.3299291
http://dx.doi.org/10.1190/1.3299291
http://dx.doi.org/10.1190/1.3299291
http://dx.doi.org/10.1190/1.1440450
http://dx.doi.org/10.1190/1.1440450
http://dx.doi.org/10.1190/1.1440450
http://dx.doi.org/10.1190/1.2245469
http://dx.doi.org/10.1190/1.2245469
http://dx.doi.org/10.1190/1.2245469
http://dx.doi.org/10.1190/1.1443908
http://dx.doi.org/10.1190/1.1443908
http://dx.doi.org/10.1190/1.1443908
http://dx.doi.org/10.1190/1.1444493
http://dx.doi.org/10.1190/1.1444493
http://dx.doi.org/10.1190/1.1444493
http://dx.doi.org/10.1190/1.1487078
http://dx.doi.org/10.1190/1.1487078
http://dx.doi.org/10.1190/1.1487078
http://dx.doi.org/10.1190/1.3463475
http://dx.doi.org/10.1190/1.3463475
http://dx.doi.org/10.1190/1.3463475
http://dx.doi.org/10.1190/1.2760162
http://dx.doi.org/10.1190/1.2760162
http://dx.doi.org/10.1190/1.2760162
http://dx.doi.org/10.1190/1.3294570
http://dx.doi.org/10.1190/1.3294570
http://dx.doi.org/10.1190/1.3294570

