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ABSTRACT

Accurate prediction of the spatial distribution of subsurface
permeability is a fundamental task in reservoir characterization
and monitoring studies for hydrocarbon production and CO2

geologic storage. Predicting permeability over large areas is
challenging, due to their high variability and spatial anisotropy.
Common approaches for modeling permeability generally
involve deterministic calculations from porosity using precali-
brated rock-physics models (RPMs) or geostatistical cosimula-
tion methods that reproduce observed experimental porosity-
permeability relationships. Instead, we have predicted per-
meability from seismic data using an iterative geostatistical seis-
mic inversion method that combines the advantages of rock-
physics and geostatistical modeling methods. First, we simulate
facies through 1D vertical Markov chain simulations. Then,

permeability, porosity, and acoustic impedance are sequentially
generated and conditioned to the previously simulated facies
model. An RPM is used to evaluate the misfit between the per-
meability predictions obtained from geostatistical cosimulation
at the well locations and well-log values computed from the
acoustic impedance. The residuals of the misfit function are
used as conditioning constraints in the stochastic update of
the models in the subsequent iteration. The outcome of our
methodology is a set of multiple geostatistical realizations of
facies, permeability, porosity, and acoustic impedance condi-
tioned to seismic data and constrained by an RPM. We first il-
lustrate the method on a synthetic 1D example and compare it to
a traditional geostatistical inversion approach. We then apply
our inversion to a 3D real data set to assess the methodology
performance with scarce conditioning data and in the presence
of noise.

INTRODUCTION

The permeability of porous rocks is a physical property that de-
fines the ability of a given fluid to flow through the pore space. In
reservoir characterization, accurate predictions of the spatial distri-
bution of permeability are fundamental to optimize production and
well placement in hydrocarbon exploration and to monitor the mi-
gration of the CO2 plume in carbon geologic storage. Absolute per-
meability describes the permeability of a rock fully saturated with a
single fluid phase (e.g., water); in the presence of two or more satu-
rating fluids, the effective permeability defines the permeability of
one fluid (e.g., water, oil, or gas) with respect to the others. The ratio
between effective and absolute permeability is defined as the rela-

tive permeability (e.g., Yang, 2017). In this work, we use the term
permeability to indicate absolute permeability.
The spatial variability of rock permeability depends on rock sedi-

mentary and tectonic evolution and their texture and structure. Even
within the same rock type or lithofluid facies, permeability values
vary over several orders of magnitude, generally defining a positive
skewed distribution. A detailed discussion on this topic can be found,
for example, in Shepherd (1989), Nelson (1994), Yang (2017), and
Ma (2019). The investigation of permeability accounts for direct and
indirect measuring techniques. Permeability can be directly measured
on core samples (e.g., Lishman, 1970; Butler, 2005; Yang, 2017).
Alternatively, permeability can be estimated from nuclear magnetic
resonance well logs, according to relationships linking the transverse
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relaxation time constant (T2) to pores characteristics (Coates et al.,
1999; Dunn et al., 2002; Ellis and Singer, 2007; Lee andWaite, 2008)
or Stoneley waves well logs, based on the induced fluid flow (Ellis
and Singer, 2007; Silva et al., 2019).
The effect of permeability variations on elastic and seismic prop-

erties has been studied in poroelasticity theory (Biot, 1956a, 1956b;
Carcione, 2015). As first theorized by Biot (1956a, 1956b) and later
expanded by White et al. (1975) and Dvorkin et al. (1994), a wave-
induced flow of the rock-saturating fluids causes an attenuation that
depends on the rock permeability. The relation between permeabil-
ity and seismic attenuation has been studied by Shapiro and Müller
(1999), Pride et al. (2003, 2004), Goloshubin et al. (2008), Rubino
et al. (2012), and Iturrarán-Viveros and Parra (2014). Permeability
also can be estimated from seismic monitoring surveys and produc-
tion data in time-lapse seismic inversion and seismic history-match-
ing studies (Landrø, 2001; Vasco et al., 2004; Dadashpour, 2009;
Dadashpour et al., 2010; Feng and Mannseth, 2010); however, this
approach requires time-lapse seismic data and can only be applied
in the production phase.
Predicting rock and fluid properties from seismic data is an in-

verse problem where the optimal solution (m̂) is the solution of a
minimization problem of the form

m̂ ¼ argmin kdobs − FðmÞk; (1)

where m represents the model parameters, dobs represents the ob-
served seismic data, and F is a nonlinear geophysical function based
on seismic wavefield propagation, poroelasticity, or geomechanics.
Examples of inverse problems for reservoir characterization include
seismic inversion (Tarantola, 2005) and petrophysical inversion
(Doyen, 2007; Bosch et al., 2010; Grana et al., 2021). Seismic
and petrophysical inversion methods can be broadly divided into
deterministic and statistical methods (Bosch et al., 2010; Grana
et al., 2021). Statistical methods include Bayesian linearized seis-
mic and petrophysical inversion (e.g., Buland and Omre, 2003;
Grana and Della Rossa, 2010) and stochastic sampling and optimi-
zation (de Figueiredo et al., 2018; Fjeldstad and Omre, 2020). Sto-
chastic optimization methods can be combined with geostatistical
simulations and geophysical inversion to generate high-resolution
models and update them according to the measured geophysical
data (e.g., Deutsch and Journel, 1997; Deutsch, 2002; Dubrule,
2003; Doyen, 2007; Soares et al., 2007; González et al., 2008;
Grana et al., 2012; Azevedo et al., 2020b).
A detailed description of the relationship between petrophysical

and elastic properties can be found in Avseth et al. (2005), Ellis and
Singer (2007), Dvorkin et al. (2014), Mavko et al. (2019), and
Grana et al. (2021). An extensive analysis of the relationship be-
tween porosity and permeability is given by Nelson (1994). Poros-
ity-permeability relations include empirical and physics-derived
rock-physics equations based on the Kozeny-Carman relation
and RPGZ equation (Kozeny, 1927; Carman, 1937; Mavko and
Nur, 1997; Glover et al., 2006; Mavko et al., 2019). These models
require the knowledge of specific rock parameters (e.g., pore shapes
or cementation) that might differ from one facies to another and
must be calibrated with experimental data (i.e., well-logs or core
samples). These relations can be integrated in seismic inversion
workflows (e.g., Tiab and Donaldson, 2012; Ma, 2019), but might
fail to reproduce the spatial variability of permeability.
Alternatively, permeability can be predicted from porosity mod-

els using geostatistical methods (Deutsch and Journel, 1997), for

example, using stochastic sequential cosimulation that reproduces
the joint distribution of permeability and porosity (e.g., Horta and
Soares, 2010). These methods rely on the experimental distribution
observed at the well locations, but generally, they do not include
physics-based constraints and might lead to geologically implau-
sible predictions.
The main goal of this work is to combine rock-physics relations

and geostatistical methods to predict permeability from seismic data
in an iterative geostatistical seismic inversion approach based on
stochastic sequential simulation and cosimulation. Sequential sim-
ulations (e.g., Soares, 2001; Horta and Soares, 2010) reproduce the
joint distributions of porosity and permeability and their spatial cor-
relations (i.e., variogram model), whereas the rock-physics model
(RPM) introduces a physical constraint. The proposed seismic in-
version algorithm is applied to discrete (i.e., lithofluid facies) and
continuous (i.e., permeability, porosity, and acoustic impedances)
properties and is applied to poststack seismic data. However, the
inversion can be extended to prestack seismic data and various
model parameterizations. The methodology is demonstrated with
synthetic and real data and the results are compared with an iterative
geostatistical seismic inversion methodology for validation.

METHODOLOGY

We propose an iterative geostatistical seismic inversion method
for the prediction of subsurface permeability distribution. The algo-
rithm is based on stochastic perturbation optimization for discrete-
continuous inverse problems (Azevedo et al., 2020a) and integrates
rock-physics and seismic data constraints in its objective function.
Each step of the algorithm is illustrated in Figure 1 and de-
scribed next.
A set of N facies models is initially simulated, sampling from

a first-order Markov chain distribution. A set of N models of
permeability, porosity, and acoustic impedance is simulated sub-
sequently, using direct sequential simulation (DSS) and cosimu-
lation (co-DSS), according to the prior distribution and the
prior variogram model (Soares, 2001; Horta and Soares, 2010),
conditioned on the facies realizations (Nunes et al., 2017). The
acoustic impedance models are used to compute N synthetic seis-
mic models by calculating the convolution of a known wavelet
with the reflectivity coefficients. The seismic models are com-
pared with real seismic data to assess the similarity of the predic-
tions with the observed data. At the same time, the acoustic
impedance models are used to compute a secondary set of per-
meability models, using precalibrated and facies-dependent
RPMs. Such permeability models represent the expected per-
meability given the distribution of elastic rock properties and their
correlation with the acoustic properties. The rock-physics-derived
permeability models are compared locally to the geostatistically
simulated permeability realizations and their similarity is com-
puted to quantify the coherency between the geostatistical simu-
lations and the rock-physics predictions (Figure 2). The two
similarities coefficients are combined through a weighted average
at each cell of the inversion grid to determine the realization with
the highest (combined) similarity. At the end of each iteration, the
realizations that have the highest similarity coefficients are used to
condition the simulation of a new set of geostatistical realizations
in the subsequent iteration.
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Facies simulations

We assume that the facies distribution follows a first-order hidden
Markov chain model along a vertical direction (Krumbein and Da-
cey, 1969; Elfeki and Dekking, 2001; Lindberg and Omre, 2015;
Fjeldstad and Omre, 2020). This means that the facies occurrence
at a given location is conditioned exclusively by the facies simulated
at the location immediately above. The transition probabilities Pi;j

are defined in a vertical transition matrix, where each row represents
the facies at the location above and the columns represent the facies
at the current location where the facies simulation is being per-
formed. The transition matrix is generally in-
ferred from the facies-log data.
To generate geostatistical realizations of facies,

at each trace location, we draw a random value at
the first sample of the inversion grid directly from
a prior distribution PðfÞ representing the prior fa-
cies proportions. Then, we subsequently simulate
the following samples along the vertical direction
from the transition probabilities:

Pi;j ¼ Pðf t ¼ ijf t−1 ¼ jÞ; (2)

where i and j ¼ 1; : : : ; Nf (Nf being the number
of facies) and t ¼ 2; : : : ; Ns (Ns being the num-
ber of samples of the seismic trace). The simula-
tion is sequentially performed at all trace locations
within the inversion grid. At each iteration l of the
stochastic method, we obtain a set of Nr realiza-
tions of facies models that we denote with f l;r.

Petroelastic properties simulations

The simulated facies models are used as con-
ditioning data for the generation of petrophysical
models of permeability (k) and porosity (ϕ) and
elastic models of acoustic impedance (IP) using
DSS and co-DSS (Soares, 2001; Horta and
Soares, 2010). As we are basing our method
in a geostatistical framework, we first generate the property that
is less related to the seismic data (i.e., more uncertain) so it explores
more widely the model parameter space. The same approach is fol-
lowed, for example, in geostatistical seismic amplitude variation
with angle inversion (e.g., Azevedo et al., 2019). Simulating per-
meability from porosity would limit the range of solutions explored:
the iterative convergence towards the desired solution would be
driven by porosity. We locally condition the petroelastic simulations
on the facies models using multilocal distribution functions (Nunes
et al., 2017). DSS and co-DSS reproduce prior marginal and joint
distributions of k, ϕ, and IP and corresponding variograms esti-
mated from the existing well-log data. At a given iteration l and
for every set of realizations r, we first simulate permeability using
DSS (Fk):

kl;r ∼ Fkðkjf l;rÞ: (3)

Then, we proceed to simulate the porosity, conditioned to kl;r and
the facies, using co-DSS (Fϕ),

ϕl;r ∼ Fϕðϕjkl;r; f l;rÞ: (4)

Finally, we simulate the acoustic impedance, conditioned to ϕl;r,
using co-DSS (FIP

),

Il;rP ∼ FIP
ðIPjϕl;r; f l;rÞ: (5)

The sequential simulation approach ensures the reproduction of the
marginal and conditional probability distributions of the petroelastic
properties in each facies.

Figure 1. Schematic representation of the proposed iterative geostatistical seismic in-
version algorithm.

Figure 2. One-dimensional example of (a) stochastic and estimated
(rock physics) permeability models, (b) estimated synthetic seismic
and observed real seismic trace, and (c) similarity curves calculated
comparing permeability models (the red) and seismic data (the
blue). The latter is used in the objective function for model pertur-
bation.
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Seismic model

The simulated elastic models of acoustic impedance are used to
calculate the seismic reflectivity coefficients series (Russell, 1988)
as

rðiÞ ¼ IPiþ1 − IPi
IPiþ1 þ IPi

; (6)

where rðiÞ is the reflection coefficient at the boundary between the
layer i and the layer below iþ 1. These models are then convolved
with a wavelet to calculate a set of synthetic seismic models. The
mismatch between synthetic and real data is defined by a similarity
coefficient S as

Sl;rseis ¼
2
P

N
s¼1 xsysP

N
s¼1ðxsÞ þ

P
N
s¼1ðysÞ

; (7)

where the superscript l and r represent the current iteration and
realization, respectively; N corresponds to the number of samples;
and x and y correspond to the predicted and real seismic data, re-
spectively. This similarity coefficient ranges between −1 and 1, but
all negative coefficients are truncated at zero. Only the positive co-
efficients are used as part of the objective function for the iterative
optimization of the models as positive values maximized the sim-
ilarity (Figures 1, 2b, and 2c).

Rock-physics modeling

In the proposed seismic inversion algorithm, a facies-dependent
calibrated RPM is used to calculate the expected permeability val-
ues given the acoustic impedance model Il;rP . The calibration of the
RPM is based on the available petroelastic well-log data. For exam-
ple, porosity ϕ can be estimated by means of a linear regression
from IP, in the form of ϕ ¼ β1IP þ β0, where β1 and β0 are, respec-
tively, the slope and intercept of the regression. The relation be-
tween permeability k and porosity ϕ can be modeled by one of
the available petrophysical equations presented in the literature such
as the Kozeny-Carman or RPGZ models (e.g., Mavko and Nur,
1997; Glover et al., 2006; Mavko et al., 2019). These models gen-
erally depend on the pore geometry, the grain size, and the cemen-
tation. In this work, we adopt the RPGZ equation (Glover et al.,
2006):

k ¼ d2ϕ3m

4am2
; (8)

where d is the grain diameter, a is a geometric factor, and m is the
cementation exponent.
For each iteration, we calculate a set of permeability models

(krpm) and compute the similarity coefficient Sk between the per-
meability trace predicted with rock-physics modeling and predicted
from the geostatistical simulation:

Sl;rk ¼ 2
P

N
s¼1 usvsP

N
s¼1ðusÞ þ

P
N
s¼1ðvsÞ

; (9)

where the superscript l and r represent the current iteration and
realization, respectively; N corresponds to the number of samples;
and u and v correspond to the physics constrained models and the

geostatistically simulated models of permeability. Similar to the
case of the similarity Sseis, negative values of Sk are truncated to
zero. The proposed algorithm combines the similarity Sseis with
the similarity Sk in the optimization objective function (Figures 1,
2a, and 2c).

Stochastic update

The optimization function used for the iterative update of the
models is defined as the weighted sum:

Sl;r ¼ ð1 − 0.5αÞSl;rseis þ 0.5αSl;rk ; (10)

where Sl;rseis is the similarity between real and synthetic seismic
(equation 7) and Sl;rk is the similarity between the stochastic
and the rock-physics estimated permeability models (equation 9).
The weight α represents the accuracy of the RPM predictions. In
the proposed algorithm, α is estimated using the Pearson’s coef-
ficient calculated between the permeability logs and the rock-
physics predictions of permeability at the well locations. The fixed
value 0.5 is used to equally balance the two components of
the sum.
At each iteration l, facies and petroelastic models with the highest

Sl;r are kept for the following iteration as auxiliary variables
ðf laux; klaux;ϕl

aux; IlPauxÞ together with their similarity coefficient Sl.
The auxiliary variable for the facies models is used to define an
indicator variable iðf lÞ (i.e., a binary variable equal to one or zero
according to the presence or absence of a facies at a given location).
At the following iteration ðlþ 1Þ; a proposal distribution Pðf lþ1jdÞ
is obtained by linearly deforming the prior distribution Pðf lÞ,
weighted by the similarity Sl:

Pðf lþ1jdÞ ¼ SliðfjÞ þ ð1 − SlÞPðf lÞ; (11)

according to the probability perturbation method proposed by Caers
and Hoffman (2006).
The facies likelihood P conditioned to Sl data is hence given by

Pðf lþ1
t jd; f l1; : : : ;t−1Þ ∝

Yt

z¼1

Pðfzjfz−1ÞPðf lþ1jdÞ; (12)

where t is the time sample in the vertical direction and Pðfzjfz−1Þ is
given by the transition matrix of equation 2 as in Azevedo
et al. (2020a).
We then cosimulate sequentially Nr sets of petroelastic proper-

ties, locally conditioned to the simulated facies models and the aux-
iliary variables of the corresponding properties ðklaux;ϕl

aux; IlPauxÞ
and Sl from the previous iteration:

klþ1;r ∼ Fkðkjf lþ1;r; klaux; SlÞ; (13)

ϕlþ1;r ∼ Fϕðϕjklþ1;r; f lþ1;r;ϕl
aux; SlÞ; (14)

Ilþ1;r
P ∼ FIP

ðIPjϕlþ1;r; f lþ1;r; IlPaux; S
lÞ: (15)

The variability of the new set of realizations depends on the local
coefficient Sl (Azevedo and Soares, 2017). If S is high, the geostat-
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istical cosimulations realizations will have a low variability within
the new ensemble of models. If S is low, the geostatistical cosimu-
lations realizations will have high variability within the new ensem-
ble of models. The spatial continuity pattern of the new set of
models depends on the imposed variogram model used in the sto-
chastic sequential cosimulation and the transition matrix used in the
first-order Markov Chain.

APPLICATION EXAMPLES

To illustrate the proposed seismic inversion algorithm for per-
meability prediction, we applied it to a 1D synthetic example
and to a real data set including a 3D full-stack seismic volume with
scarce well-log data. In both study cases, we run a seismic inversion
for the characterization of a carbonate geologic sequence. The data
used were measured on a carbonate sequence of the Albian age, in
the Brazilian offshore. Using the available geologic knowledge and
petrophysical data, we classified the lithologies into two main facies
(f): facies 1 is a well-cemented packstone, with low porosity (up to
10%) and relatively lower permeability (up to 100 mD) and facies 2
is a calcarenite, with higher porosity (8%–19%) and permeability
(1–350 mD). This facies classification is used for synthetic and real
case studies.

Synthetic case study

We first validated the proposed method on a synthetic seismo-
gram inspired by real well-log data. The data set includes a time
window of 77 samples. The synthetic seismic trace is calculated
as the convolution of the IP well log using a wavelet extracted from
the real full-stack seismic volume (Figure 3a). In this example, we
do not account for the uncertainty associated with the seismic-to-
well tie, wavelet estimation, and forward model approximation.
We calibrated a facies-dependent RPM using the well-log data, as

shown in Figure 3a and 3b. The parameters of the RPM are shown
in Table 1. The value of the accuracy parameter α of the RPM (equa-
tion 10), calculated as the correlation of the real and predicted per-
meability logs, is 0.89. We also calculated a transition matrix
(Table 2) from the reference log profile (Figure 3a) and vertical var-
iogram models fitted to the experimental variograms computed
from the true logs. The variogram models have a zero nugget
and range of 15, 14.5, and 13 ms for permeability, porosity, and
impedance, respectively.
We ran the proposed geostatistical inversion with rock-physics

constraints and compared its results with those obtained with a tra-
ditional geostatistical inversion (Azevedo et al., 2020a). Both meth-
ods generated 32 realizations of facies and petroelastic properties
per iteration, running for a total of six iterations. The simulations
are conditioned at three vertical locations of the borehole (green-
filled circles in Figure 3a), used as experimental samples. The
model realizations exactly match the values at the location of the
experimental data, whereas, at all of the other locations, they repro-
duce the facies transition matrix, the marginal and joint distributions
of the continuous properties, and the vertical variogram.
The results obtained after the first iteration from both methods are

shown in Figures 4 and 5. Both inversion techniques provide similar
results, by construction, and the joint distribution of permeability and
porosity reproduces the experimental ones observed at the well loca-
tion in each facies (Figure 4c). After six iterations, the models gen-
erated by both algorithms match the ground truth (Figures 6 and 7).

The traditional geostatistical approach inversion shows a significant
overestimation of the facies 1 proportion, permeability and porosity,
and an underestimation of impedance. The results obtained with the
proposed method show higher prediction accuracy, as shown by the
most likely facies model resulting from the last realizations
(Figure 6b). Analogously, the permeability models are closer to
the real well log (Figure 6a). The uncertainty predicted from the pro-
posed method (i.e., the P10–P90 interval defined by the 10th and 90th
percentiles of the set of simulated models) better represents the vari-
ability of the continuous properties. Figures 6a and 7 show the per-
centage of well-log samples that are within the predicted P10 and P90
curves. Despite an improvement in the prediction of the continuous
variables, the seismic data mismatch (Figure 7a and 7b) of the pro-
posed inversion shows a worse fit with the true seismic trace, possibly
due to the rock-physics constraint in the objective function.

Real case study

We then applied the proposed inversion to a real case study, includ-
ing 3D seismic reflection data acquired over the area that extends
along 13.25 km in the north–south direction and 7.60 km in the
east–west direction (Figure 8). The inversion interval is approximately
250 ms two-way traveltime (TWT). Well-log data are available at four

Figure 3. One-dimensional synthetic data set: (a) facies log (f), real
well logs and calibrated RPM predictions, and conditioning data
and (b) joint distributions retrieved from well-log data and RPMs.
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Figure 6. Permeability and facies models resulting from the sixth iteration of the synthetic study case for geostatistical with and without rock-
physics constrains: (a) k simulations, (b) facies models, and (c) k–ϕ joint distributions for a single realization.

Figure 5. Simulations of ϕ, IP, and corresponding synthetic seismic data resulting from the first iteration: (a) rock-physics constrained and
(b) geostatistical inversion. Percentage values indicate the percentage of well-log data included between the P10 and P90 curves; an average
Sseis from all of the realizations is shown for the seismic traces.

Figure 4. Permeability (k) and facies (f) models resulting from the first iteration of the synthetic study case for geostatistical with and without
rock-physics constraints: (a) k simulations and well log, (b) fmost likely facies models and well log, and (c) k versus ϕ joint distributions for a
single realization.
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Figure 7. Simulations of ϕ, IP, and corresponding synthetic seismic
data resulting from the sixth iteration: (a) rock-physics constrained
and (b) geostatistical inversion. Percentage values indicate the per-
centage of well-log data included between the P10 and P90 curves;
an average Sseis from all of the realizations is shown for the seismic
traces.

Figure 8. (a) Seismic grid and relative location of
well data used for the real case application. Well
W2 (the blue) does not have k log; well W3 (the
red) was used to assess locally the performance of
the proposed inversion method. The red line rep-
resents the vertical well section used to illustrate
the results. (b) Recorded full-stack seismic reflec-
tion data.

Figure 9. Well-log data and RPM calibration from the real case ap-
plication. (a) Joint experimental distributions and (b) real logs and
rock-physics predictions.
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well locations (Figure 8) and include f, ϕ, k (except for well W2), and
IP. Well W3 is used as a blind-well test, whereas the other three wells
are used for data conditioning and model calibration.
For the geostatistical simulations and cosimulations, we im-

posed 3D variogram models fitted to the observed data. For
the horizontal direction, the variogram was modeled from the ex-
perimental variogram computed from the observed seismic ampli-
tude. The vertical variogram model was fitted to an experimental
variogram computed from the well logs. The variogram models are
represented by a nested structure of two exponential models with
weights 0.68 and 0.32, with zero nugget. The correlation lengths
are shown in Table 3.

Figure 10. Synthetic seismic volumes calculated
at the last iteration from (a) the pointwise average
of 32 IP models from the proposed inversion
method, (b) the best-fit IP model out of the 32
models from the proposed method, and (c and
d) corresponding models resulting from the geo-
statistical method.

Figure 11. Trace-by-trace seismic data similarity
(Sseis) between the real seismic data (Figure 8)
and the synthetic seismic models shown in Fig-
ure 10: (a) average model from the proposed
method, (b) best-fit model from the proposed in-
version, and (c and d) corresponding models ob-
tained from the geostatistical method.

Table 1. Parameters used for the RPM for the synthetic case.

Porosity-permeability Facies 1 Facies 2

d (mm) 0.7 0.35

m 1.9 1.8

a 2/3 10/3

Impedance-porosity

β1 (m/s g/cm3)−1 −2.36e−5 −2.81e−5
β0 0.41 0.48

Parameters and equations are defined in the rock-physics modeling section.
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The facies transition matrix is estimated from the log-facies pro-
files at the well locations, whereas the RPM parameters are fitted to
the well logs (Table 4 and Figure 9). The objective function weight
parameter α is calculated to be 0.75; this represents the average ac-

curacy value calculated on the rock-physics predictions of k at wells
W1 and W2 (Figure 9b).
We ran the proposed seismic inversion method with six iterations,

generating 32 facies and petroelastic models per iteration. The re-
sults are compared with those predicted from the standard geostat-
istical seismic inversion method (Azevedo et al., 2020a). Both
methods converge toward solutions that reproduce the seismic data,
including their spatial continuity and amplitude content (Figure 10).
The trace-by-trace similarity between the predicted and the ob-
served seismic data is shown in Figure 11. Overall, the proposed
method (Figure 10a and 10b) produced results that are closer to
the observed seismic data: the average Ssies for the proposed method
is 0.77 (standard deviation 3.1 × 10−4) whereas, for the geostatis-
tical method, the result is 0.75 (standard deviation 2.9 × 10−4). The
location of poor convergence shown in Figure 11 corresponds to
more uncertain areas due to the poor signal-to-noise ratio of the
observed seismic data or the nonstationary nature of the wavelet.
The predicted facies and petroelastic realizations obtained with

the Markov chain and DSS and co-DSS honor the experimental data
(Figure 12). The facies models at the last iteration are summarized
in Figure 13 and include the likelihood of facies 1 (Figure 13a and
13c) and the most likely facies model (Figure 13b and 13d). The
predictions (Figure 13a and 13b) show a larger lateral continuity
than the standard geostatistical method (Figure 13c and 13d). In
addition, the proposed method detects thin and laterally continuous
layers of facies 2 that are undetected or poorly reproduced by the

Figure 12. Comparison of the well-log data from wells W1 and W4
with the most likely facies models and the ensemble of 32 realiza-
tions obtained from the last iteration of the proposed method. Facies
and petroelastic models honor the conditioning experimental data.

Figure 13. (a) Pointwise likelihood of facies 1,
calculated from the ensemble of 32 realizations
at the last iteration of the inversion with the pro-
posed inversion method, (b) most likely facies
model calculated from the last iteration results
of the proposed method, and (c and d) correspond-
ing models resulting from the geostatistical
method.

Table 2. Transition matrix of the facies profile for the
synthetic case.

Facies 1 Facies 2

Facies 1 0.85 0.15

Facies 2 0.07 0.93
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traditional inversion method (Figure 13c and 13d). Such features
also are reproduced in the stochastic simulations of permeability
(Figure 14a). Compared with the traditional inversion results
(Figure 14d), the proposed inversion method predicts thinner per-
meable layers, corresponding to facies 2 (e.g., between 10 and
12 km of distance, at TWT approximately 3620 ms). The distribu-
tions of porosity (Figure 14b) and acoustic impedance (Figure 14c)
predicted by the proposed algorithm have a higher vertical and lat-
eral resolution compared with the iterative geostatistical seismic in-
version results (Figure 14e and 14f).
The results at the blind-well (W3) location (Figure 15) show the

match between the predicted models and real well-log data. The
facies sequence is well reproduced by the most likely facies model
predicted by the proposed method (Figure 15a). The proposed in-
version method captures the facies sequence between 3460 and
3490 ms and the facies intercalations between 3500 and
3550 ms, whereas the traditional inversion method (Figure 15b) pre-
dicts a continuous layer of facies 2. The petroelastic properties

match the true logs, with local dissimilarities where the facies pre-
diction is uncertain. The permeability experimental data are better
reproduced by the proposed method, whereas porosity and acoustic
impedance predictions show similar results.

Figure 14. A pointwise average calculated from
the ensemble of 32 realizations at the last iteration
of the inversion using the proposed inversion
method, respectively, for (a) k, (b) ϕ, and
(c) IP. The same models are shown for the geostat-
istical methods, for (d) k, (e) ϕ, and (f) IP.

Figure 15. Results from the last iteration at the blind well location
(W4) compared with the colocated well-log data: (a) results from
using the proposed inversion method and (b) results using the geo-
statistical inversion method.

Table 3. Parameters of the 3D variogram model for the real
case.

Structure number

Range

Inline (m) Crossline (m) Vertical (ms)

k 1 54 44 7.5

2 500 240 7.5

ϕ 1 54 44 7.25

2 500 240 7.25

IP 1 54 44 6.5

2 500 240 6.5
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DISCUSSION

The proposed iterative geostatistical seismic inversion algorithm
aims to predict subsurface permeability models by accounting for
the rock-physics prior information. We applied this methodology to
synthetic and real data and compared it to an iterative geostatistical
seismic inversion method in which no prior rock-physics informa-
tion is used in the model update. Considering the two application
examples, we show how including rock-physics constraints in the
geostatistical seismic inversion improves the predicted models and
imposes physical constraints on the solution. The results are accu-
rate when tested on a blind-well test (Figures 6 and 15) and show
improved spatial continuity of the predicted facies and petroelastic
models (Figures 13 and 14). In the real study case, the variance of
permeability is larger than the traditional method (Figure 16a and
16d), whereas it is similar for other properties. This effect demon-

strates the ability of the proposed method to better explore the
model parameter space, especially for permeability.
The choice of an RPM mostly depends on the study case. Here,

we adopted the RGPZ model (Glover et al., 2006), whose param-
eters are related to the rock texture and cementation. These param-
eters were inferred from the thin sections and samples. The
integration of the RPM in geostatistical inversion is challenging
to the lateral correlation in the subsurface. The secondary set of per-
meability models estimated from acoustic impedance using the
RPM does not account for the spatial patterns of the geologic model
but imposes a physical constraint in the objective function of the
stochastic optimization. The iteratively updated set of solutions
is coherent with the RPM, the observed data, and their spatial struc-
ture. The weight of the rock-physics constraints is effective propor-
tionally to the quality of the RPM parameterization. A poorly
informed RPM would have less weight in the iterative process.
The facies classification is embedded in the inversion through the

stochastic simulation and updating of a 1D Markov chain. The
method is illustrated for two facies but can be extended to any finite
number of facies, using the indicator variables, as long as they can
be discriminated at the seismic scale. In theory, the method also
could be extended to 2D and 3D Markov models to avoid lateral
discontinuities; however, the computational cost of such methods
is much larger, and the simulation might not honor the geometry
of the geologic horizons. Despite the use of a vertical model only,
the horizontal continuity of the facies is fairly reproduced during the
simulation/cosimulation of the continuous properties, which condi-
tions the facies generation and ensures horizontal continuity at the
following iteration.
The proposed algorithm is here described and tested for the in-

version of poststack seismic data. However, it
can be extended to the inversion of pre- or par-
tial-stack seismic data if a suitable poroelastic
model is available, accordingly to the study case.
The following paragraph describes each algo-
rithm step in more detail.

CONCLUSION

The proposed iterative geostatistical seismic
method predicts the spatial distribution of per-
meability using rock-physics constraints, rather
than uniquely relying on the reproduction of
the experimental joint distributions of petroelas-
tic properties. In a geostatistical approach, acous-
tic impedance is cosimulated from permeability:
there is not an explicit model, but only a statis-
tical correlation inferred from well-log data. We
then calculate a permeability spatial distribution
from acoustic impedance using a model based on
rock physics (priorly known). Comparing the
two aims at penalizing the geostatistical realiza-
tions that are not reliable from a “rock physics
perspective.” This form cycle consistency gives
us the constraints necessary to link permeability
distributions to the corresponding seismic ampli-
tudes. This approach is especially valuable for
applications with limited well-log data, where
it is challenging to estimate the joint distribution.
The simulation of the model variables is based on

Figure 16. The pointwise variance of the realizations generated at the last iteration of k,
ϕ, and IP, using the proposed method (respectively, [a–c]) and the traditional geostat-
istical method (respectively, [d–f]).

Table 4. Parameters of the RPM for the real case.

Porosity-permeability Facies 1 Facies 2

d (mm) 0.6 0.4

m 2 1.65

a 2/3 10/3

Impedance-porosity

β1 (m/s g/cm3)−1 −2.08e−5 −2.22e−5
β0 0.37 0.39
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geostatistical algorithms, whereas the optimization is based on an
objective function that depends on a trade-off between seismic mis-
match and rock-physics constraints. The method is validated on two
case studies using synthetic and real data. For both, we showed a
comparison with a traditional geostatistical inversion based on the
seismic data misfit. The comparison shows that the rock-physics
constraints improve the results of a seismic inversion in realistic
noise conditions. The proposed method allows for overcoming
the weak correlation between permeability spatial distribution
and seismic reflection data. The proposed inversion is computation-
ally efficient and can be applied to various geologic environments as
long as an RPM is available.
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