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ABSTRACT

Formation evaluation analysis, rock-physics models, and log-
facies classification are powerful tools to link the physical prop-
erties measured at wells with petrophysical, elastic, and seismic
properties. However, this link can be affected by several sources
of uncertainty. We proposed a complete statistical workflow for
obtaining petrophysical properties at the well location and the
corresponding log-facies classification. This methodology is
based on traditional formation evaluation models and cluster
analysis techniques, but it introduces a full Monte Carlo
approach to account for uncertainty evaluation. The workflow
includes rock-physics models in log-facies classification to
preserve the link between petrophysical properties, elastic

properties, and facies. The use of rock-physics model predic-
tions guarantees obtaining a consistent set of well-log data that
can be used both to calibrate the usual physical models used in
seismic reservoir characterization and to condition reservoir
models. The final output is the set of petrophysical curves with
the associated uncertainty, the profile of the facies probabilities,
and the entropy, or degree of confusion, related to the most
probable facies profile. The full statistical approach allows us
to propagate the uncertainty from data measured at the well lo-
cation to the estimated petrophysical curves and facies profiles.
We applied the proposed methodology to two different well-log
studies to determine its applicability, the advantages of the new
integrated approach, and the value of uncertainty analysis.

INTRODUCTION

In reservoir modeling and seismic-reservoir characterization,
most of the physical models used are calibrated at the well location.
However, well-log data do not provide direct measurements of the
reservoir properties we account for in reservoir models; the desired
reservoir properties are generally obtained from the measured well
logs through formation-evaluation analysis. This process contains
several sources of uncertainty. Similarly, log-facies classification
(LFC) can be severely affected by the uncertainty of petrophysical
curves performed in formation evaluation. Furthermore, in some
cases, the classification could be not linked to seismically derived
attributes if rock-physics modeling (RPM) results are not included
in the classification methodology.
The first goal of this work is to present a new methodology for

LFC based on petrophysical and acoustic/elastic properties to link

log-facies to seismic inverted attributes. The second added value of
the workflow is the introduction of Monte Carlo simulations to gen-
erate several realizations of petrophysical and elastic curves to ob-
tain different log-facies profiles, which are used to infer facies
probabilities and facies uncertainty.
The first step of the methodology is formation evaluation analy-

sis. The petrophysical evaluation of subsurface formations requires
the combined efforts of log measurements and core data together
with a quantitative log interpretation (QLI) model. The main results
obtained from the petrophysical interpretation of well logs are the
volumes of certain formation components (solid matrix and fluids)
at each data level that combine the measurements provided by sev-
eral tools, such as well-log resistivity, acoustic, density, neutron,
nuclear magnetic resonance, fluid sampling, coring, and imaging
(for details we refer the reader to Darling [2005] and Ellis and
Singer [2007]). The standard approach consists of simultaneously
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optimizing equations described by one or more interpretation mod-
els. Formation evaluation is done by solving the so-called inverse
problem, in which well-log measurements and response parameters
are used together to compute volumetric results. An improved ap-
proach was introduced recently by Heidari et al. (2010). However,
there always is some uncertainty in the inferred parameters obtained
by the inversion process because errors in any of the measurements
lead to errors in the final values (see Fylling, 2002; Verga et al.,
2002; Kennedy et al., 2010; Viberti, 2010). Moreover, other sources
of uncertainties in the determination of the volume fractions come
from the theoretical models used in the interpretation and the input
parameters characterizing them. Hence, a statistical QLI is per-
formed to obtain reliable results and to assess the uncertainty for
the characterization.
RPM represents the second step. Rock physics is mainly used to

establish the link between petrophysical parameters and acoustic/
elastic properties. In our approach, the uncertainty from formation
evaluation is propagated through the well-calibrated rock-physics
model (RPM) to provide a full probabilistic petro-elastic model.
This paper only covers the application of the basic models used
in rock physics and the statistical approach. For those who are in-
terested in in-depth knowledge of rock physics, we refer to Bourbie
et al. (1987), Nur and Wang (1989), Wang and Nur (1992, 2000),
Avseth et al. (2005) and Mavko et al. (2009). Statistical rock phy-
sics was introduced by Mukerji et al. (2001a) and it is essentially
based on Monte Carlo simulations. An extensive explanation is in-
cluded in Doyen (2007).
Finally, an LFC is performed at each depth location of the well.

Reservoir facies are usually defined from sedimentological infor-
mation and core analysis. This classification must then be consistent
with the one performed on well-log data to link petrophysical prop-
erties with reservoir facies. Traditionally, LFC is based on multivari-
ate techniques (in particular, cluster analysis; see Kaufman and
Rousseeuw, 1990) introduced to automatically identify common
features within well-log data and computed curves (generally pet-
rophysical properties). In this work, we also account for elastic
properties to guarantee a clear discriminability in the petro-elastic
domain, through RPM. This issue is of key importance for the fol-
lowing step of seismic facies classification performed on seismic
data to obtain reliable reservoir models. In this paper, we do not
focus on the classification of the seismic data but on the initial
well-log analysis and LFC.
The probabilistic petro-elastic model yields a statistical LFC.

Thus the probability of occurrence of different facies at the well
is obtained. The concept of entropy (Shannon, 1948) is then
exploited to quantify the uncertainty related to the discrete random
variable describing the facies distribution along the well.
At each step of the workflow, namely formation evaluation ana-

lysis, RPM, and LFC, we account for the sources of uncertainty
associated with measured data, numerical models, and natural het-
erogeneity to provide for each estimated curve, the corresponding
confidence interval at each depth location along the well.
The crucial added value is the assessment and propagation of the

uncertainty at each step to finally provide a reliable classification
fully based on the amount of information characterizing the entire
workflow. In general, implementations of formation evaluation,
RPMs, and log-facies analysis commonly neglect the uncertainty
involved in these processes and can thus lead to an erroneous final
interpretation. This is the pitfall the probabilistic petro-elastic

classification tries to avoid by quantifying the reliability of each
step and of the final result. Moreover, the discriminated facies
are automatically characterized from the petrophysical and acous-
tic/elastic point of view, which is a key factor in data integration in
seismic reservoir characterization. Eidsvik et al. (2004) presented
a probabilistic log-facies formulation using hidden Markov mod-
els to get the posterior probability distributions of the log-facies
while accounting for uncertainties in the log data and RPM, but
did not account for the uncertainties in the formation evaluation
analysis.
In contrast to previously published works in formation evaluation

analysis and LFC, the uncertainty propagation problem is addressed
by using a full Monte Carlo approach for each step of the method.
Monte Carlo methods allow us to numerically estimate the posterior
probability density functions (PDFs) of the variables we are inter-
ested in: in formation evaluation we estimate the posterior PDFs by
propagating, point by point, the uncertainty from acquired well
logs; in RPM we estimate the posterior PDFs by propagating the
uncertainty from the previously obtained petrophysical curves; fi-
nally both PDFs are combined in LFC where we sample from these
distributions and combine the results to statistically classify the fa-
cies, point by point, and estimate the associated uncertainty. The so-
obtained uncertainty represents the uncertainty associated with the
degree of approximation of the physical models used in the method
and the uncertainty related to error measurements. However, ran-
dom errors are also taken into account to represent the natural varia-
bility and heterogeneity of the rocks.
The whole methodology is first illustrated by applying all the

steps to the same well-log data set of an offshore West Africa field.
We then perform the same study on another real case, located in the
North Sea, where a complex sedimentological facies classification
has been identified.

METHODOLOGY

The methodology can be divided into three parts:

• QLI;
• RPM computation;
• LFC.

The flowchart of the methodology is shown in Figure 1. In this
specific case, it refers to a clastic environment, but it can be applied
to different scenarios if suitable log interpretation and RPMs are
available.
In the following, we analyze in detail these three steps and the

uncertainty propagation through them.

QUANTITATIVE LOG INTERPRETATION

The petrophysical characterization of subsurface formations is an
inverse problem and generally requires an integrated approach.
Well-log measurements and core data are combined together with
a QLI model. QLI, also known as formation evaluation, provides the
volume fractions of interest (solid matrix and fluids) at each depth
level by solving the corresponding inverse problem, in which well-
log measurements and response parameters are reconciled with the
theoretical interpretation models. In particular, the inverse problem
is based on an opportune cost function that expresses the distance
between the observed measurements and the predictions of the
model chosen to describe the system. The final aim is to minimize
the cost function and determine the solution (i.e., the volume
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fractions of the formation components) that optimally mimics the
observables.
Theoretical response-equations in QLI come from a simplified

description of the physics involved in the well-log instruments
and are considered together with several constraints. These are ty-
pically used to impose geological and/or petrophysical prior knowl-
edge to avoid physically meaningless results and define the domain
space of the problem. In details, QLI can be divided into three dif-
ferent phases:

• system parameterization, which defines the set of parameters
(unknown volumes) which characterizes the formation;

• direct modeling, which involves the laws (linear and/or non-
linear) able to generate the synthetic values for the observa-
bles, once the parameters describing the model are fixed;

• inverse modeling, which plays its role in volumetric
quantification.

System parameterization and direct modeling are quite straight-
forward; even so, it is worth mentioning a few points of discussion
that need to be taken into account to properly define the do-
main space.
Mathematically, at a given depth x, the vector dðxÞ represents the

observational log data (e.g., gamma ray, neutron, density, etc.). QLI
model is determined by the components of a vector pðxÞ containing
the depth-dependent unknown volumetric fractions, such as poros-
ity ϕ, volume of clay vclay, water saturation sw, and others. For sim-
plification purposes, from now on the dependency upon the spatial
position x is disregarded and it is assumed that all the recorded log
measurements are sampled with a constant depth step. Formally, we
can write

p ¼ ðϕ; vclay; sw; : : : Þ (1)

Once a well is drilled into the formation, some mud fluid is
pumped into the borehole to maintain the pressure balance. Often,
drilling is done at an overbalanced condition and the mud has a
pressure slightly higher than the formation pore pressure. This pres-
sure gradient induces mud filtrate to seep into the porous rock sys-
tem. Hence, well-log measurements are affected, at least, by
the existing step invasion profile due to the circulating fluid. The
mud invasion divides the formation into two separated parts: the
so-called flushed zone (usually labeled XO) and the unflushed zone,
or deep zone (DE). This splits the set of unknowns into two subsets,
and the vector p can be written as

p ¼ ðpXO; pDEÞ (2)

Shallow reading-log measurements are assumed to respond only
to volumes of formation components in the first zone (vector pXO).
Similarly, deep reading-logs only see the unflushed zone (vector
pDE). Some tools, which have a medium depth of investigation,
are assumed to be influenced by both zones, and their response-
equations contain terms for all formation components, regardless
of the zone (see Appendix A for details).
On the other hand, physically based assumptions constrain and

reduce the domain space of the unknowns. For instance, the stan-
dard normalized-to-unity investigated total volume fractions (in the
shallow and deep zones) need to be achieved. Moreover, it is

common to assume lateral continuity: All the solid formation com-
ponents extend infinitely from the borehole at 0° dip. Porosity in the
flushed and undisturbed zone is the same, regardless of the type of
fluids filling the pore space. So, the sum of the fluid volumes in the
flushed zone is equal to the sum of fluid volumes in the unflushed
zone. In a more compact form, all of the constraints can be collected
in the function uðpÞ.
Synthetic log data s are obtained by applying the direct modeling

operator fQLIðpÞ for a given fixed values of the model parameters p

s ¼ fQLIðpÞ: (3)

The forward model is a set of equations, linear or nonlinear,
which describes the link between volumetric curves (p) and petro-
physical properties measurable at the well (d). The most common
equations are summarized in Appendix A.
Inverse modeling tries to determine the components of the para-

meter vector p, using the observational data d. The optimization
problem involves a cost function to be minimized to reduce the dis-
crepancy e between the observed data and the synthetic data gen-
erated by the direct modeling

e ¼ s − d ¼ fQLIðpÞ − d: (4)

The definition of the cost function introduces the concept of a
weighted two-norm for the vector e. As a matter of fact, because
the physical observables and measurements come from several
well-log tools and involve absolute values that are in general very
different (and have different units), we have to normalize the two-
norm to treat all the quantities at the same level. This normalization
mainly depends on typical tool accuracy. Moreover, an additional
term based on log analyst experience, a multiplier, is incorporated to
weight the different tools with respect to their influence in the final
answer. The understanding of how a tool can affect the results and
the knowledge of tool physics is required to select the multiplier
values. Finally, normalizations and weight multiplier factors can
be organized into a weighting matrixW. So, the cost function reads

Figure 1. Flowchart of the methodology.
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jðpÞ ¼
�
1

2
eTWe

�
juðpÞ

; (5)

which is a scalar and it can be represented as a function of the un-
knowns collected in the vector p. The aim of optimization is to de-
termine the optimal solution p� that minimizes the above cost
function, under the set of constraints uðpÞ representing the solution
space for the problem. The so-obtained vector p� represents the out-
put and solution of the standard QLI.
We now set the scenario regarding the uncertainty analysis and

evaluation for the QLI methodology. There always is some degree
of uncertainty in the inferred volumes p� obtained by the inversion
process because each piece of information introduced in system
parameterization and direct modeling can be affected by several er-
rors. Quantification and propagation of these uncertainties through-
out the inversion problem is considered and assessed here with
appropriate methods.
The main sources of uncertainty in QLI come from well-log mea-

surements, heterogeneity of rock systems, possible thin layered in-
tervals, invasion effects, lithological and/or textural assumptions,
environmental correction issues, simplified interpretation models,
and input parameters. A complete analysis of the above uncertain-
ties would involve a full knowledge of the individual contributions
and such detailed preliminary evaluation is rarely, if ever, available.
Thus, the practical quantification problem simplifies the classifica-
tion of sources into three macrogroups: methodological, systematic
and random errors (Theys, 1991, 1994, 1997).
Methodological errors are mainly due to an incorrect choice of

interpretation models and related parameters. In general, model se-
lection is one of the most critical steps in a reliable QLI and, for
sure, it is mandatory to keep in mind all of the simplifying hypoth-

eses of the real system it intends to describe. Because an inaccurate
model selection could introduce significant errors to the interpreta-
tion, core measurement calibration and validation are fundamental
at this particular stage. Petrophysical experience plays a role as
well. Potential errors associated with an incorrect choice of the the-
oretical models are difficult to quantify and their magnitude may
vary significantly. This is to state that methodological errors, once
assessed, should be mainly used as a sort of guidelines on the ap-
plicability limits and constraints underlying each model.
Systematic errors are defined as reproducible inaccuracies of the

measurement mainly due to imprecision of the instrumental system,
processing of the data, environmental conditions, and so on. Be-
cause systematic errors cannot be removed by repeated runs, they
need to be recognized and corrected before any calculation.
Random errors are those that need to be accounted for and pro-

pagated throughout the QLI process. Random errors are mostly as-
sociated with the physics of the well-log measurement system and
cannot be corrected because they cannot be reproduced. Statistical
variations in count rates or signal noise are examples of random
errors. Also, the uncertainty associated with the parameters used
to correct the measurements for any environmental effect has an
important impact in the final petrophysical characterization and
must be accounted for.
Given the broad spectrum of random uncertainty, a statistical

treatment of the problem is suitable. Despite this apparent need,
most formation evaluations in practice are based on a single deter-
ministic description that can reproduce the well observations with a
certain quality and confidence. The single deterministic model and
its description make the adopted model rather unsuitable for uncer-
tainty assessment.
On the other hand, the statistical approach combines the deter-

ministic QLI with a Monte Carlo simulation to
build a probabilistic framework to study the
natural variability of the results (Figure 2). To
avoid confusion, in what follows deterministic
QLI means with no Monte Carlo simulation
implemented.
We start from uncertain inputs representing

log measurements. Uncertainty in each input
variable is represented by a probability density
function (PDF) whose range of values corre-
spond to the nominal uncertainty provided with
the measurement. In particular, Gaussian distri-
butions are used to represent the random variable
d̃ ∼N ðd;ΣdÞ and describe the uncertainty of ac-
quired data. The measured value d represents the
mean, the standard deviation is equal to the in-
strumental/processing error (collected in the cov-
ariance matrix Σd), and N is a compact notation
for the normal distribution.
This set of distributions, estimated at each

depth location along the well profile, provides
the bandwidth of tolerance for the response vari-
ables of the forward model.
Model uncertainties can be added to the

forward modeling fQLI by means of a random
noise εQLI, distributed with zero mean and a prior
covariance matrix, so that the forward model
becomes

Figure 2. Schematic representation of petroelastic uncertainty estimation and LFC
through Monte Carlo simulations of petrophysical and elastic properties.
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s ¼ fQLIðpÞ þ εQLI: (6)

In most of the cases, the forward model can be represented as

s ¼ ½gr; nt; dn; rs� ¼ fQLIðϕ; vmin; swÞ þ εQLI; (7)

where ϕ is porosity, vmin is the vector of the volumes of mineral
fractions, sw is water saturation, gr is gamma ray, nt is neutron por-
osity, dn is the acquired density, and rs is resistivity. It allows com-
puting the volumetric fractions (porosity, volume fractions of
mineral, and saturations) from the acquired logs (see Appendix A
for details). In our approach, we also include velocity data to guar-
antee consistency with the RPM step that follows.
The simulation is performed by randomly sampling the values for

each input log required for the interpretation model from the PDFs
of d̃ at each data level (Viberti, 2010). Suitable vertical correlated
and conditioned Monte Carlo sampling can be implemented in a
straightforward way to perform a geologically driven sampling
and minimize the probability of the occurrence of physically mean-
ingless scenarios.
Once a set of values has been sampled, the QLI cost function is

optimized and the results are stored. When a statistically represen-
tative number of realizations have been drawn, the results can be
sorted and histograms created to approximate the local PDFs of
the uncertain output p̃

p̃ ¼ Fðd̃Þ; F ¼ ðfQLI þ εQLIÞ−1: (8)

Thus, the single vector p� obtained in the deterministic QLI is
now enhanced to account for the uncertainty in p̃.
Once this goal is achieved, all inferences can be obtained from

the posterior PDFs by computing statistics relative to individual
parameters. Because the final result is presented as PDFs, this tool
provides a unified framework for volume estimates and for the un-
certainty associated with them.

ROCK-PHYSICS MODELING

An RPM is represented by a set of equations that transform pet-
rophysical variables into acoustic/elastic variables. RPM can be a
simple regression on well data or a more complex physical model
characterized by parameters that need to be estimated, such as elas-
tic moduli of matrix and fluid components, critical porosity, aspect
ratio, and/or coordination number (Mavko et al., 2009).
Generally, the standard workflow starts from the model calibra-

tion from well-log data, or the estimation of the physical parameters
involved, to obtain a good match between RPM predictions and
well-log measurements. The model type depends on the geologic
environment and the parameter estimation is given by the solution
of an inverse problem.
In the traditional rock physics workflow, the generic RPM can be

written in the concise form

r ¼ fRPMðpÞ; (9)

where the vector p represents the petrophysical input obtained from
QLI and fRPM comprises the set of equations defining the model.
The output vector r is the vector containing acoustic and elastic

properties, typically P-wave velocity (VP), S-wave velocity (VS),
and density (ρ)

r ¼ ðVP; VS; ρÞ: (10)

In literature, there are many different RPMs and they can be
classified in three big classes (Avseth et al., 2005; Mavko
et al., 2009):

• Empirical models: In this case, RPM usually is a simple
regression using elastic moduli or directly velocities;

• Granular media models: These are based on Hertz-Mindlin
contact theory, which assumes that the rock is represented by
a random pack of spherical grains;

• Inclusions models: These models describe the rocks as a
sequence of inclusions (typically ellipsoidal) until the de-
sired pore fraction is achieved.

The various models differ for the calculation of the dry rock prop-
erties. The usual scheme of a RPM starts from the computation of
fluid and solid phase (matrix) properties. Then, dry rock properties,
i.e., the properties of the solid phase with its own porosity, are cal-
culated with equations depending on the RPM chosen. Finally, the
effect of fluids using Gassmann equation is included.
In general, once the RPM has been calibrated to well-log data, to

evaluate the fluid effect, different saturation scenarios could be con-
sidered: a “brine” scenario, where the hydrocarbon column in the
reservoir is substituted by water, and a “full hydrocarbon” scenario,
where hydrocarbon saturation is constantly increased up to one-
minus irreducible water saturation.
As described, our aim is to assess the uncertainty in RPM by

propagating it from QLI probabilistic output. From the previous
QLI analysis, we have realizations of the petrophysical variables
representing basic volumetric properties of the formation: Uncer-
tainty is represented by the obtained PDFs of p̃. Thus, fRPM links
the uncertain QLI inputs to multiple RPM output variables.
In the end, the output PDFs of elastic properties r̃ are generated

through a Monte Carlo simulation (Figure 2, top), extending the
deterministic RPM to the probabilistic case

r̃ ¼ Gðp̃Þ; G ¼ fRPM þ εRPM: (11)

This means that the random errors of the first step (QLI) are pro-
pagated through RPM. To account for the uncertainty associated
with the RPM approximation, a random noise εRPM can be added
to the fRPM direct modeling operator. Monte Carlo simulation still
provides a simple way to propagate all uncertainties in the RPMs
because the latter are in general nonlinear (except for linear empiri-
cal models).
As we previously mentioned, we will restrict our description to a

clastic reservoir, without losing generality. For high-porosity clastic
reservoirs, common RPMs are the so-called granular media models
(see Appendix B and Mavko et al., 2009). These models are based
on Hertz-Mindlin contact theory (Dvorkin et al., 1994; Dvorkin and
Nur, 1996; Gal et al., 1998), which describes a rock as a random
pack of spherical grains. The model equations are described in de-
tail in the Appendix B. In the reservoir layer, in addition to input
petrophysical curves, i.e., effective porosity, volumes of mineral
components, and saturations, the applied RPM requires the follow-
ing input data: fluid and matrix properties, reservoir pressure, and
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temperature. Fluid parameters and reservoir condition information
are generally available from PVT analysis and well tests measure-
ments, whereas solid-phase properties are inferred from core miner-
alogical analysis. In reservoir characterized by low-porosity rocks,
inclusion models (Avseth et al., 2005; Mavko et al., 2009) are more
appropriate.

LOG-FACIES CLASSIFICATION

The goal of this section is to present a new methodology for LFC
and the related uncertainty evaluation. The classification of facies at
well location is a key important step in reservoir modeling: the static
reservoir model essentially consists of stochastic simulations, which
are driven by LFC at the well locations.
We propose here a classification based on petrophysical and

acoustic/elastic properties to link log-facies to seismic inverted at-
tributes that are often used as soft conditioning data in reservoir
simulation. However, different sources of uncertainty affect high
resolution LFC. We have classified the associated uncertainty in
two main groups: the uncertainty related to petrophysical curves
obtained in QLI and the uncertainty associated with elastic proper-
ties (velocities or impedances) recovered by RPM. We finally cou-
ple the so-obtained results by Monte Carlo simulations to generate
several realizations of log-facies profiles that are used to infer facies
uncertainty from the probabilistic analysis previously performed
(Figure 2, bottom).
Here, we first present the standard approach to set the basis of the

statistical methodology. LFC usually combines a multivariate
statistics technique (cluster analysis) and interpretation of prior
sedimentological information. Cluster analysis is a well-known
technique that helps to group objects according to their mutual si-
milarity. Petrophysical and elastic logs can be statistically processed
to find clusters, by using, for example, an unsupervised hierarchical
clustering algorithm. This algorithm groups the log data based on
their statistical similarity into hierarchically ordered set of clusters.
During the characterization phase, an initial number of clusters is
selected. The identified clusters are compared to quantitative and
qualitative information derived from cores (routine and special core
analyses, and lithological, sedimentological, and petrographical de-
scriptions). The integration of information from different sources
(logs, core measurements, lithology, sedimentology, etc.) is a
key step in the characterization of the different clusters. In particu-
lar, a suitable training set t is selected from QLI and RPM outputs
(p�, and r, respectively) and LFC is run including the data all along
the well, providing a depth-dependent and discrete class vector, col-
lecting the results of the classification. In detail, the log-facies vec-
tor gives the classified litho-classes at a given depth value.
Eventually, some of the clusters are grouped to identify and classify
log-facies for use in the 3D geological model. In the conventional
workflow, LFC does not consider the uncertainty associated with
input curves (petrophysical and acoustic/elastic ones).
To evaluate the uncertainty related to LFC, we use the Monte

Carlo approach. From the previous steps of the methodology
(QLI and RPM), we have obtained PDFs of petrophysical and
acoustic/elastic curves (p̃ and r̃), and these define the probabilistic
training set t̃. In particular, from this set of PDFs collected in t̃, N
realizations can be sampled and then used to perform N LFC pro-
files through Monte Carlo simulations, and estimate the posterior
probability on facies classification, in addition to the most probable
facies profile. In other words, cluster analysis is applied to the

different QLI and RPM realizations to obtain the related scenarios
of log-facies. Then, from the so-generated profiles we can count, at
each depth location, the frequency of the occurrence of each log-
facies, and infer a depth-by-depth posterior probability distribution.
The results are collected in a vector c whose entries are the prob-

ability of each classified log-facies, so that if have a set of M pos-
sible discriminated facies, their probabilities of occurrence are
c ¼ ðc1; : : : ; cMÞ. Sedimentological information can be further in-
tegrated by multiplying the probability vector c by the confusion
matrix obtained from the sedimentological classification (e.g.,
the matrix accounting for the degree of confusion among the dif-
ferent facies with those provided by sedimentologists). We finally
observe that, from vector c, for instance, the most likely facies sce-
nario can be estimated.
We can take a further step to quantify the uncertainties associated

with the probabilistic LFC result. In fact, the most probable scenar-
io, as the output of a probabilistic workflow, should be coupled with
a confidence value showing the amount of information brought by
the discrete classification. For this reason, the concept of entropy
(Shannon, 1948) can be exploited. This function is a statistical para-
meter able to provide some numerical insights on the intrinsic varia-
bility of the discrete variable studied with respect to all the
outcomes of the classification.
The scalar information entropy (Shannon, 1948; Mavko and

Mukerji, 1998; Mukerji et al., 2001b) associated with the probabil-
ity vector c is defined as follows

h ¼ −cT logM c ¼ −
XM
i¼1

ci logM ci; (12)

where the logarithm is computed in base M (number of facies) be-
cause we have classified M different facies; this restricts and nor-
malizes the entropy to the range [0,1].
As a simple example, assume that M ¼ 3 and, at a particular

point of the depth profile, the three facies are equally probable:
c ¼ ð1∕3; 1∕3; 1∕3Þ. Hence, the entropy is h ¼ 1, namely the max-
imum entropy value. This means that uncertainty is at its maximum.
On the other hand, if c ¼ ð1; 0; 0Þ we get h ¼ 0, giving a minimum
entropy scenario and no uncertainty. In-between situations are char-
acterized by entropy values that quantify the degree of disorder
brought by the classification: 0 < h < 1. Entropy measure of uncer-
tainty goes beyond measures such as variance and covariance, and
can be used for categorical variables (e.g. facies).
The information provided by entropy analysis on LFC, compris-

ing uncertainty from QLI and RPM, will be discussed in two real
examples.

APPLICATION: FIRST EXAMPLE

The methodology has been applied to a real data set from an ex-
ploration well (here called A), offshore West Africa. Well A is ver-
tical and drilled in a deep offshore clastic reservoir made by soft
sandstones of a turbidite channel complex. The prospect is a typical
combined structural-stratigraphic trap. It is composed of a large tur-
bidite sandstone channel that drapes over the north flank of a large
salt diapir. Sparse shale beds are present and analysis of core sam-
ples reveals that the clay is a mixture of illite and kaolinite (respec-
tively 70% and 30%). The reservoir fluid is oil. A comprehensive
set of wireline logs (standard and high resolution) has been acquired
to provide a reliable formation evaluation: gamma ray (gr),
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resistivity (rs), sonic (sn), density (dn), neutron (nt), and nuclear
magnetic resonance (nmr) logs. Globally, the quality of the acquired
data is very good (Figure 3). Following our notation, the depth-
dependent data vector (see also Appendix A) is

d ¼ ðgr; rs; sn; dn; ntÞ: (13)

Deterministic QLI via a straightforward fQLI
resulted in the generation of mineralogical vo-
lumes (vsand, vsilt, and vclay), effective porosity
ϕ, and water saturation sw

p ¼ ðvsand; vsilt; vclay;ϕ; swÞ: (14)

In well A, invasion effects were negligible so
that pXO ¼ pDE.
In Figure 4, the results of our local minimiza-

tion, p�, in other words the final set of petrophy-
sical curves performed in QLI, are shown. In
Figure 5, we give an example of comparison be-
tween our result and a standard commercial soft-
ware output, which shows a satisfactory match
between the two estimated set of data.
An RPM is then used to establish the link be-

tween petrophysical parameters p� and acoustic
properties r. For this reservoir study, we used the
soft sand (uncemented) model (Appendix B),
based on Hertz-Mindlin contact theory (Dvorkin
et al., 1996).
Petroelastic property uncertainty assessment

and facies classification has been performed in
the lower reservoir whose top is located at ap-
proximately 2510 m. In the reservoir layer, the
applied RPM requires the following input data
from QLI: effective porosity, volumes of mineral
components (sand, silt, and clay), and fluid sa-
turations. The parameters include effective pres-
sure of 35 MPa, a critical porosity of 0.4 while
the coordination number is 9. In this particular
case, effective pressure has been assumed to
be constant within the reservoir, but, in general,
pressure effects on velocities should be taken into
account. Several models have been developed to
account for pressure effect on velocities (e.g.,
Eberhart-Phillips et al., 1989) or on dry rock
elastic moduli (Macbeth, 2004); however, we
point out that these methods must be calibrated
(typically using lab measurements at different
pressure regimes) to determine the empirical
parameters. The RPM is calibrated at well loca-
tion, by comparing the velocity and density esti-
mated from the elastic parameters with the
velocity and density from the recorded logs in
the borehole. The calibration is performed in
wet condition (meaning that a preliminary fluid
substitution is performed on well logs) to avoid
the effect of fluid in rock parameters calibration.
Focusing on the depth interval including the

lower reservoir layer (2480–2600 m), the results can be seen in
Figure 6. The calibration is performed with a trial and error method;
optimization techniques could be used as well, but these methods
do not guarantee that the optimized parameters still preserve their

Figure 3. Well-log data set interval of well A, from left to right: P-wave and S-wave
velocity, density, neutron porosity, and gamma ray.

Figure 4. Petrophysical curves performed in QLI, from left to right: porosity (total por-
osity in blue, effective porosity in red); volumetric fraction curves (clay in green, quartz
in yellow, and silt in brown); water saturation; and the cumulative volumetric display
(shale in orange, silt in brown, quartz in yellow, water in blue, and oil in green; red
dashed line represents one-minus porosity and separates solid and fluid phase).
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physical meaning. RPM calibration, in many practical applications,
can be quite complex because the physical-mathematical model
cannot account for heterogeneity and natural variability of the rock.
In our application, the model overpredicts sonic log velocities at
2520 m depth and does not match the high peak of P-wave velocity
at 2550 m depth. The mismatch at 2520 m is due to lack of accuracy
of the model, whereas the velocity peak at 2550 m could be a

measurement error or represent a different lithology. The lack of
accuracy of the RPM in some small depth intervals should be par-
tially compensated by the variability introduced in the following
Monte Carlo simulations.
Traditional LFC is achieved through cluster analysis, carried out

using key-curves (defining the training set t) selected to be effective
porosity, clay content, and VP∕VS ratio

t ¼ ðϕ; vclay; VP∕VSÞ: (15)

In particular, VP∕VS ratio refers to brine condition to avoid any
fluid effect as a result of hydrocarbon presence. In this case, a pre-
liminary analysis showed that VP∕VS ratio and clay content have a
good correlation; however, the training set could include only VP, or
VS (or both of them), if these logs are identified as good lithological
indicators for the reservoir (see second example).
The training set t was statistically processed by means of a hier-

archical agglomerative clustering algorithm with Ward’s minimum
variance linkage method (Ward, 1963). Hierarchical algorithms find
successive clusters using previously established clusters (i.e., the
resultant classification has an increasing number of nested classes).
Thus, given a data set consisting of NO objects, agglomerative clus-
tering methods generate outputs where objects are gradually parti-
tioned. Ward’s minimum variance linkage method makes use of
squared Euclidean distances to define the dissimilarity among clus-
ters. The most common and practical way to visualize the results is
through a plot called dendrogram. This allows reconstructing the
merging history of the NO objects of the studied data set from
the beginning (each object forms a cluster of its own) to the end
of the clustering process (all objects are in the same cluster).
The dendrogram for our case application is plotted in Figure 7.
In traditional log-facies analysis, the number of the classes

(facies) that can be identified from sedimentological information
is often higher than the number of classes of interest in reservoir
models because the quality of the data at the well location and
the indirect measured data far away from the well (seismic and elec-
tromagnetic data) do not allow us to distinguish sedimentological
features with the same accuracy. Using the dendrogram that shows a
very stable clustering (Figure 7) and core analysis calibration, a
three-facies classification, based on sand concentration, is deter-
mined (Figure 8). It consists of:

• low-concentration turbidite (LCT) facies in green;
• mid-concentration turbidite (MCT) facies in brown;
• high-concentration turbidite (HCT) facies in yellow.

The proposed facies classification is based on the percentage of
quartz and clay in the facies as derived from interpreted log curves.
This classification is simplified compared to sedimentological mod-
els, but is strongly consistent with the facies classification of the
static reservoir model, where porosity and net-to-gross are distrib-
uted following distributions estimated from well logs in each facies.
Because thin interbeddings of hemipelagic shales have been ob-
served in the reservoir at the well location, facies LCT could be
subdivided into two subclasses, namely low and very low concen-
tration turbidite (the latter including nonreservoir shales). This be-
havior can be also observed in the dendrogram. However, these two
classes are not distinguishable from the petro-elastic point of view
within the reservoir.

Figure 5. Petrophysical outputs comparison, from left to right: por-
osity, volume of clay, and volume of quartz (red curves represent
our results; blue curves represent standard commercial software
outputs).

Figure 6. Calibration of the RPM, from left to right: P-wave and
S-wave velocity and VP∕VS ratio (black curves represent the actual
sonic log and grey dashed curves represent the predicted RPM). The
RPM has been calibrated in wet condition and applied to the well
scenario by Gassmann fluid substitution.
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Monte Carlo simulations are then exploited to provide the uncer-
tainty propagation and evaluation. The starting point are the normal
PDFs associated with the set of wireline logs (d̃) used in QLI with
standard deviations that are typical of the log measurements and the
processing of raw data. Table 1 collects common standard devia-
tions (Viberti, 2010).
In this example, a sensitivity analysis shows that 100 realizations

are enough to provide a stable solution and reliable results. Realiza-
tions of input curves sampled from d̃ provide the set of cost func-
tions to be minimized and the related set of petrophysical curves
defining p̃. In Figure 9, we plot the different realizations and the
median of the petrophysical sets of curves.
From the previous QLI analysis, we have realizations of the pet-

rophysical variables representing basic properties of the formation,
such as porosity and mineral volumetric contents. Thus, we can
generate a set of realizations of elastic properties logs through a
Monte Carlo simulation by applying the RPM to the set of petro-
physical curves realizations from QLI. In the Monte Carlo simula-
tion, we add a random error to account for the uncertainty
associated with RPM. From the PDFs of p̃ and the previously cali-
brated RPM, the set of acoustic and elastic curves and the corre-
sponding PDFs of velocities r̃ are then computed (Figure 10). In
Figure 11, we show the full probability distributions of porosity
and P-wave velocity, and, as an example, we extract the correspond-
ing histograms at two given depth locations.
On the base of the set of 100 realizations of effective porosity,

volume of clay, and VP∕VS ratio, we can obtain 100 training sets
sorted in t̃, to be used to generate 100 profiles of facies. From the
previous steps of the methodology, we have obtained 100 realiza-
tions of petrophysical curves (QLI results, Figure 9) and 100 reali-
zations of rock physics curves (RPM results, Figure 10). We now
perform 100 LFCs through Monte Carlo simulations (Figure 12,
top) and estimate the posterior probability on facies classification,
in addition to the most probable facies profile. In particular, cluster
analysis is applied to the 100 realizations to obtain 100 profiles of
log-facies; then the frequency of the facies, at
each depth location of the profile, provides the
posterior probability of facies occurrence and
the most likely facies estimation.
In Figure 12 (bottom), we show, as an exam-

ple, five realizations of facies obtained from
Monte Carlo simulations: the thick high-porosity
sand layer is well-identified in all the profiles,
whereas the thin layers at the top and at the bot-
tom of the reservoir are more uncertain. This
means that, in the upper and lower part of the
reservoir, the LFC can vary as a function of
RPM and QLI input parameters in a traditional
deterministic workflow and the underestimation
of the uncertainty could lead to a misclassifica-
tion of the facies.
From the so-generated 100 profiles, we can

count, point by point along the profile, the
frequency of occurrence of each log-facies and
infer the posterior probability distribution c, by
normalizing, at each data level, the frequencies
by the total number of realizations (100). In
Figure 13, we show the probability of log-
facies obtained from petroelastic Monte Carlo

realizations and the final most probable classification.We notice that
in the mid part of the profile the probability of having a HCT facies is
veryhigh and theuncertainty is small,whereas in the thin layers zones
the uncertainty is much higher.
This also is reflected in the entropy curve that we plot together

with the most likely facies profile (Figure 13) to quantify the un-
certainty in the discrete probabilistic scenario. Entropy is computed
in base three because we have discriminated three different facies, to

Figure 7. Dendogram associated with LFC. A dendrogram consists
of many U-shaped lines connecting objects in a hierarchical tree.
The stem of each U represents the distance between the two objects
being connected. Red clusters refer to the connecting histories of the
three recognized facies: low-concentration turbidite (LCT), mid-
concentration turbidite (MCT), and high-concentration turbidite
(HCT).

Figure 8. LFC performed at well location: LCT in green, MCT in brown, and HCT in
yellow. LFC is derived by using petrophysical curves (porosity and clay content) and
velocity data (VP∕VS ratio). On the right, we show two crossplots in petrophysical (top
right) and petroelastic (bottom right) domain, color-coded by facies classification.
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get values between zero (no uncertainty) and one (maximum
uncertainty).
To interpret entropy results, we comment here on the surface de-

scribed by the variation of the probabilities related to the three dis-
criminated facies. Because the three probabilities add up to one, we
can take any two as independent variables to map the behavior of
entropy for different values of the facies probabilities. Specifically,

hðcHCT; cLCTÞ ¼ −½cHCT log3ðcHCTÞ þ cLCT log3ðcLCTÞ
þ ð1 − cHCT − cLCTÞ
× log3ð1 − cHCT − cLCTÞ� (16)

with cHCT þ cLCT ≤ 1, where cHCT is the probability of obtaining
HCT at a given depth and cLCT is the probability associated with
LCT; whereas cMCT ¼ 1 − cHCT − cLCT. As previously explained,

the three probabilities are collected in the vector c ¼
ðcLCT; cMCT; cHCTÞ. When the three facies are equiprobable, we
have maximum entropy, whereas when the probability of a given
facies is close to 1, the entropy tends to 0. The two crossplots
on the right of Figure 13 help in clarifying the information provided
by entropy analysis. With Figure 8 in mind (right), it can be easily
seen that the transition areas between the different facies are char-
acterized by high entropy (yellow clouds in Figure 13) as expected.
This fact mainly affects the generalized high entropy associated
with MCTs. On the other hand, the extreme LCT and HCT facies
show low entropy (blue clouds).

APPLICATION: SECOND EXAMPLE

The second case study is in the North Sea: The reservoir is lo-
cated at approximately 1750 m, has an average thickness of about
80 m and is part of a complex fluvio-deltaic system with sequences
of sandstone and shale. Sandstone and shale layers are relatively
thin compared to the seismic resolution. Several works have been
published on nearby fields in the North Sea (Mukerji et al., 2001a,
2001b; Avseth et al., 2005).
A complete set of well logs is available for one well of the area.

The well is slightly deviated and passes through the main reservoir
layer filled with oil. The set of sonic logs, density, and a set of pre-
liminary petrophysical curves performed with commercial software
are shown in Figure 14. We point out that three main mineralogical
fractions have been identified: clay (mainly illite), muscovite, and
quartz. Porosity is relatively high in clean sand in the upper part of
the reservoir. The quality of the sonic log is generally good except
for a few data samples where some high peaks in P-wave velocity
are recorded, whereas no changes are recorded by S-wave velocity,
generating unrealistic values of Poisson ratio and VP∕VS ratio.
Furthermore, a preliminary facies classification has been per-

formed based on sedimentological information, accurate deposi-
tional models, and core sample analysis. A set of eight facies
has been identified in this reservoir: (1) marine silty-shale; (2) pro-
delta; (3) flood plain; (4) mouth bar; (5) distributary channel; (6) cre-
vasse splay; (7) tidal deltaic lobes; (8) tight. The distribution of
porosity and clay content color coded by facies classification
(Figure 15) shows that some of these sedimentilogical facies cannot
be discriminated by petrophysical properties. For example, marine
silty-shale, prodelta, and flood plain have similar distributions in
terms of porosity and clay content (Figure 15). As a consequence,
the elastic response of some facies is approximately the same. For
this reason, we applied the proposed methodology with two differ-
ent classifications. We first used the eight-facies sedimentological
definition, followed by a simplified three-facies classification,
namely sand, silty-sand (mixed), and shale, to classify facies that
can be recognized at seismic scale.
As in the previous example, we show the different steps of the

methodology. First, an RPM is calibrated at the well location. In this
case, we applied a stiff sand model (Mavko et al., 2009). Soft sand
and stiff sand models belong to the group of granular media models
and are based on Hertz-Mindlin contact theory (Appendix B): The
soft sand model extrapolates elastic property values to low poros-
ities by using a modified Hashin-Shtrikman lower bound; the stiff
sand model uses a modified Hashin-Shtrikman upper bound, result-
ing in an increase of elastic properties values compared to the soft
sand model. Similarly to the previous case, the calibration is
performed in wet conditions by comparing sonic-logs data and

Figure 9. Set of 100 realizations of petrophysical curves (gray
curves), from left to right: effective porosity, volume of clay, and
volume of quartz (volume of silt is computed by difference 1 minus
the sum of effective porosity, clay, and quartz). The pointwise med-
ian curve (P50) is displayed in red.

Table 1. Standard deviations associated with log
measurements.

Log Standard deviation

Neutron 7%

Density 0.015 g∕cm3

Gamma ray 5%

Resistivity 10%

Sonic 7%
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rock-physics model predictions (Figure 16). The model parameters
are effective pressure P ¼ 27 MPa, critical porosity of ϕ0 ¼ 0.42,
and coordination number n ¼ 9. The overestimation of S-wave ve-
locity in the stiff sand model is well-known (Mavko et al., 2009)
and, for this reason, we applied a factor of 3∕4 to reduce S-wave
velocity predictions and match the data. This correction is purely
heuristic but it often is applied in real cases (a physical explanation
of this reducing factor for shear wave can be found in Bachrach and
Avseth, 2008). Another method to achieve a good fit is to reduce the
values of shear moduli of mineralogical fractions; however, this
could lead to unrealistic values for this mineralogy and would re-
quire a recalibration of P-wave velocity. The direct comparison of
RPM predictions and sonic logs is shown in Figure 17: Generally,
we have a good agreement except for the data samples with high
peaks in VP velocity. A slight overestimation of velocity in the
upper shaly layer is observable but this could be due to a different
mineralogical composition of clay in the overcap layer on top of the
reservoir.
We then apply the uncertainty propagation methodology to pet-

rophysical properties and rock physics elastic attributes. We gener-
ate a set of 50 realizations of effective porosity, volume of clay, and
volume of quartz (volume of muscovite is computed by difference
to guarantee that the sum of the mineralogical fraction is 100%); we
then compute the corresponding set of P-wave and S-wave veloci-
ties and density (Figure 17). The parameters used for the probabil-
istic formation evaluation analysis are the same as those used in the
previous case and summarized in Table 1.
Rock physics diagnostics (Figure 15) showed that, for this spe-

cific case, the use of VS velocity could improve facies classification
in the combined petroelastic domain. For this reason, we decided to

use in this case an extended data set made by effective porosity,
volume of clay, volume of quartz, P-wave, and S-wave velocities.
We then performed the facies classification with eight sedimento-
logical facies. In such an application, we expect more variability and

Figure 10. Set of 100 realizations of elastic curves (gray curves),
from left to right: P-wave and S-wave velocity. The pointwise med-
ian curve (P50) is displayed in red.

Figure 11. Posterior PDFs of porosity (left side) and P-wave velocity (right side). For two depth locations z1 and z2, we also show the
histogram of the simulated values.
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higher entropy compared to the previous example as the number of
facies is higher and some facies cannot be discriminated from the
petrophysical and/or elastic point of view. The full set of 50 realiza-
tions is shown in Figure 18: By comparing all the realizations we
can detect some similar features (such as layers made by facies one,
two, and three, and layers made by facies four and five in the upper
part) but, as expected, it is hard to discriminate between facies with

similar petroelastic properties. The extracted statistics, in particular
the e-type (ensemble average) and the maximum a posteriori (MAP)
of facies, help to interpret the results (Figure 18). The e-type is the
ensemble average of the set of models and is a continuous variable;
the maximum a posteriori represents the facies that maximizes the
posterior probability estimated from the ensemble of realizations as
the facies frequency divided by the total number of realizations
(Figure 19). In the upper part of the profile, we can recognize
the shaly overcap made by facies 1, 2, and 3 and the thicker layer
of the main reservoir made by facies 4 and 5. In the lower part, the
variability in the classification is higher, which results in a sequence
of thin layers. However, if we look at the whole set of realizations,
we observe that even in the upper part of the reservoir the variability
is quite high; this is confirmed by the entropy profile (Figure 19).
Differently from the previous case, the overall entropy is generally
high; this can be due to the large number of facies in the classifica-
tion but also to the vertical heterogeneity of petrophysical and elas-
tic properties (Figure 17).
To improve the facies classification at the well location, we

introduced a new approach based on Markov chain methods
(Krumbein and Dacey, 1969). Markov chains are a statistical tool
that have been used in geophysics to simulate facies sequences to
capture the main features of the depositional process. Markov
chains are based on a set of conditional probabilities that describe
the dependency of the facies value at a given location on the facies
values at the locations above (upward chain) or the locations below
(downward chain). The chain is said to be first-order, if the transi-
tion from one facies to another depends only on the immediately
preceding facies. The transition matrix is built by assuming (or es-
timating from other wells in the field or nearby fields) prior propor-
tions and transition probabilities. The matrix in our case is eight by
eight elements: the terms on the diagonal of the transition matrix are
related to the thickness of the layers. The height of the numbers on
the diagonal corresponds to the strength of the probability of ob-
serving no transition, and, as a consequence, also corresponds to

the thickness of the layer.
In our application, the posterior probability of

facies estimated from logs of petroelastic proper-
ties is combined with the probabilities of the tran-
sition matrix (for mathematical details, see Grana
and Della Rossa, 2010) by a simple integration,
and facies values are sampled from the resulting
distribution. In Figure 19, we show one realiza-
tion of facies obtained by this technique: the use
of Markov chain allows us to account for vertical
continuity and produces a more realistic classifi-
cation in cases where a high number of facies is
identified. However, the main limitation of such a
choice is a result of the assumptions required to
assemble the transition matrix. In our case, for
example, we do not have any information about
the distribution and thickness of facies seven and
eight, and the results we obtained only depend on
the information assumed from the depositional
and sedimentological model.
Finally, we repeated the same application with

a simplified classification: we assumed three fa-
cies in the reservoir that, for the sake of simpli-
city, we called shale, silty-sand, and sand. The

Figure 12. Set of 100 realizations of facies (top left) at well location
and estimated most likely facies profile (top right). On the bottom
five realizations are shown: LCT in green, MCT in brown, and HCT
in yellow.

Figure 13. Posterior probability distribution of facies estimated by Monte Carlo simu-
lation (left), most likely facies profile (middle), and associated entropy function (right):
LCT in green, MCT in brown, and HCT in yellow. On the right, we show two crossplots
in petrophysical (top right) and petroelastic (bottom right) domain, color-coded by the
associated entropy given by the probabilistic facies classification.
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reservoir characterization study performed on this field had shown
that these facies can be discriminated in the petroelastic domain and
represent the facies classification recognizable at seismic scale.
Figure 20 shows the comparison of the results obtained with the
different classification. The methodology clearly works better when
a limited number of facies is identified (also by comparing the
entropy profiles of Figures 19 and 20); however we notice that there
is a good agreement between the two classifications as facies one,
two, and three (in eight facies definition) correspond to shaly layers,
and facies four and five (in eight facies definition) correspond to
sandy layers.

DISCUSSION

The proposed methodology classifies log-facies at the well loca-
tion by integrating three different disciplines (formation evaluation,
RPM, and cluster analysis) by means of a statistical approach
that allows us to understand how plausible the obtained interpreta-
tion is, or, in other words, how large the uncertainties are in the
obtained solution. The assessment of uncertainty in geophysical in-
verse problems has been addressed in several works (Jackson, 1972,
1979; Tarantola, 2005), but a standard application to well-log ana-
lysis is, in general, neglected. Classical deterministic workflows in
formation evaluation analysis and, in particular, LFC, do not allow
us to propagate the uncertainty in measured data to the property
estimates in a robust and comprehensive way. Statistical methods,
on the other hand, can incorporate all available information on the
studied system (observational data, theoretical predictions, and
prior knowledge) and this information can be represented by prob-
ability distribution functions. According to the statistical approach,

the solution is not unique, but rather it consists of a posterior
probability distribution function over the model domain space that
describes the probability of a given model being the closest to the
true one.
The aim of this paper is to enhance the classical approach by

introducing Monte Carlo simulations providing a proper way to ac-
count for a statistical view. Because each step of the methodology
strongly depends on the previous one, a robust uncertainty analysis
and classification from the very beginning (initial acquired data set)
is a mandatory requirement for a safe and trustworthy probability
distribution definition. The input uncertainties represent the critical
point of the methodology. Formation evaluation is the aforemen-
tioned starting point and so it drives the remaining modeling.
As we have already pointed out, the prior characterization of input
uncertainties for QLI relies on separating the different sources of
errors associated with tool measurements, environmental correc-
tions, preprocessing computations, and model parameterizations.
Systematic errors need to be corrected because their propagation
is meaningless. Random errors may not be neglected when the num-
ber of measurements to be averaged is low and/or the measurement
precision is very poor.
Monte Carlo simulations try to address this uncertainty issue, but

a robust and straightforward way to account for all the sources of
uncertainty is still lacking. However, other open problems exist and
two of the major ones are the possible correlation existing between
the uncertainty affecting the different log acquisitions and the
various reference volumes of investigation involved (vertical and
lateral resolution). The assignment of probability distribution func-
tions to log measurements assumes a fixed and certain value
of the given nominal depth. A more robust approach should also

Figure 14. Well-log data set and preliminary petrophysical curves at well location, from left to right: P-wave and S-wave velocity; density;
porosity (total porosity in blue, effective porosity in red); volumetric fraction curves (clay in green, quartz in yellow, and muscovite in brown);
and water saturation.
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consider the vertical uncertainty related to the recorded depth of any
log measurements.
An important point of discussion is also related to the constrained

number of facies in the probabilistic workflow. In particular, the

methodology quantifies and propagates the uncertainty through
LFC once the number of facies has been a priori fixed. Monte Carlo
simulations are applied to the multivariate statistical technique
chosen to discriminate a given number of log-facies. Different

Figure 16. Rock physics crossplots: (left) P-wave velocity versus effective porosity; (right) S-wave velocity versus effective porosity color-
coded by volume of clay. Black lines represent stiff sand model for different clay contents (from top to bottom: 10%, 20%, 30%, 40%, 50%,
and 60%).

Figure 15. Preliminary facies classification: a set of 8 facies has been identified in this reservoir: (1) marine silty-shale; (2) prodelta; (3) flood
plain; (4) mouth bar; (5) distributary channel; (6) crevasse splay; (7) tidal deltaic lobes; (8) tight (left). Grouped histogram of effective porosity
(top right) and clay content (bottom right) as a function of facies classification.
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petrophysical and elastic scenarios in the probabilistic training set
could be better described by a number of facies that is higher or
lower with respect to the a priori fixed one. A generalization of
the methodology to take into account this issue also could help
for a more rigorous characterization.
The application of the entire workflow to real

data sets seems to confirm its feasibility and
reliability. Log-facies probability and entropy
evaluation quantify the uncertainty in the classi-
fication and represent a probabilistic approach
from the very beginning of borehole data inter-
pretation for seismic reservoir characterization.
It is worth mentioning that even more complex
systems need to be tested and studied to finally
state all the potentiality of the methodology here
developed.
It is also worth mentioning the choice of

Monte Carlo simulations for accounting the un-
certainty propagation problem. First of all,
Monte Carlo techniques calculate the probability
density of any functions of random variables and
do not require any a priori assumption on the
type of distribution for the results. In fact, QLI
and RPM can be highly nonlinear and the uncer-
tainty propagation problem cannot be solved
analytically. In this light, Monte Carlo simula-
tions provide a simple means by which uncer-
tainties in inputs can be translated into
uncertainties in the calculated output properties.
Moreover, this methodology is very flexible,

allowing different interpretation models to be built and uncertainties
tested in a robust way. Correlated as well as independent parameters
can be handled and all the possible constraints defining the problem
can be taken into account in a straightforward way. The downside to
Monte Carlo simulations is that a large number of simulations are

Figure 17. Set of 50 realizations of petrophysical and elastic curves (gray curves), from
left to right: effective porosity, volume of clay, volume of quartz (volume of silt is com-
puted by difference 1 minus the sum of effective porosity, clay, and quartz), and P-wave
velocity and S-wave velocity predictions. The pointwise median curve (P50) is dis-
played in red. The dashed blue line represents sonic-log data.

Figure 18. Set of 50 realizations of facies (left) at well location and e-type (ensemble average) and estimated most likely facies profile (top
right). Color codes are the same as in Figure 15.
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typically required for meaningful statistics to be developed. So, it is
fundamental to understand the number of samplings needed to get
stable results. To conclude, with Monte Carlo simulations, we have
a powerful tool to propagate uncertainties in the different steps of
the methodology: the technique can be applied to different studies,
independently of the physical models (defining formation evalua-
tion and rock physics interpretation) and mathematical techniques
(for LFC) chosen for the specific case.
As described in the application sections, in this work, we per-

formed LFC following a hierarchical agglomerative clustering algo-
rithm with a Ward’s minimum variance linkage method. Other
methods can be used to classify facies, such as linear discriminant
analysis, partitioning cluster algorithms, or neural networks. In par-
ticular, in petrophysics, neural networks are used in unsupervised
learning mode. The different classification algorithms were pre-
viously investigated to rank the obtained results, undertaking tests
on known synthetic data sets of variable complexity. The objective
was to understand which methods are the most effective in gener-
ating an LFC suitable for reservoir characterization purposes. In
particular, the proposed and here used hierarchical agglomerative
Ward’s technique proved by far the best, as it correctly classified
most of the synthetic data sets. K-means clustering, unsupervised
neural networks, centroid linkage methods, and unweighted average
(UPGMA) with Euclidean distance algorithms showed reasonably
good classification rates, even though they were not suitable for ar-
bitrary-shaped data clouds. Moreover, no significant advantages
were observed when Manhattan or Mahalanobis distance were used
in substitution for the Euclidean distance in the UPGMA algorithm.
Other clustering algorithms (e.g., single linkage, complete linkage,
and weighted average) proved unsuccessful because they were char-
acterized by high misclassification rates. Given the above consid-
erations on the ranking and availability of the different classification

algorithms, we focused on Ward’s hierarchical agglomerative meth-
od. However, the overall methodology works with any appropriate
classification algorithm. As previously mentioned, the main advan-
tage of the presented workflow is that the Monte Carlo simulations
allow us to extend the training data set and to propagate the uncer-
tainty from the input measured data to the facies classification.
Uncertainty evaluation is important from a qualitative point of

view to assess the reliability of the estimated properties, but it
can be used in quantitative modeling by using the full probability
distributions of the property. In reservoir modeling, many geosta-
tistical simulations methods (for example, sequential indicator si-
mulation and sequential Gaussian simulation) require input prior
distributions of the properties we want to model, i.e., facies propor-
tions and the prior distributions of rock properties (such as porosity
and net-to-gross). These distributions are generally assumed from
prior geological knowledge of the field or nearby fields, but, in our
case, the distributions can be extracted directly from Monte Carlo
simulations. Nevertheless, we point out that the PDFs derived from
Monte Carlo simulations are depth-dependent; stationary conditions
should be verified before extrapolating marginal distributions. In a
practical reservoir modeling workflow (Doyen, 2007), we first gen-
erate reservoir facies models with sequential indicator simulations
(or multipoint geostatistics if a suitable training image is available).
Then, we generate porosity and other reservoir property models
with sequential Gaussian simulation where the prior distributions
of reservoir properties are facies-dependent and are estimated from
the marginal distributions derived from Monte Carlo simulations in
each facies.
An important point of our methodology is the integration of rock-

physics modeling. The main advantage of this step is the link be-
tween facies classification and elastic properties, which is provided
by the model calibrated at the well location. In fact, this link

Figure 19. Facies probability estimated from ensemble and extracted statistics, from left to right: probability of facies (first three plots);
entropy, maximum a posteriori of facies distribution, and new facies classification performed by Markov chain integrated approach. Color
codes are the same as in Figure 15.
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guarantees that facies classification estimated from seismic ampli-
tudes in seismic characterization studies is consistent with LFC at
well location. Instead of rock physics predictions, sonic logs could
be used as well, but the correlation between sonic logs and petro-
physical curves is not always optimal in well-log analysis. Further-
more, resolution of sonic logs is generally lower than the resolution
of well logs used in formation evaluation analysis. If the sonic logs
are reliable and correlated to petrophysical logs, the lower resolu-
tion of sonic logs would reduce the entropy but, at the same time,
increase the uncertainty in the output estimation. On the other side,
RPMs are applied to a set of petrophysical curves with similar re-
solution, which results in a complete consistent petroelastic data set.
The drawback of such a choice is that the RPM approximation
could be not accurate in some interval layers, as pointed out in
our applications, but this lack of accuracy is partially compensated
by Monte Carlo multiple realizations.
Finally, we point out that in our methodology, we tried to include

different sources of uncertainty: log measurements, RPM approx-
imations, heterogeneity, and natural variability of the rocks.
However, other factors could influence formation evaluation analy-
sis, RPM, and LFC, such as anisotropy, laminar and/or dipping
layering, and well deviation. These issues should be carefully eval-
uated in each case and a sensitivity analysis should be performed to
verify if they can be neglected or not.

CONCLUSIONS

The proposed probabilistic LFC workflow is based on the inte-
gration of three different disciplines: QLI, RPM, and multivariate
statistical techniques (cluster analysis) for LFC. Furthermore, this
workflow focuses on the uncertainty propagation through the three
different steps and is based on Monte Carlo simulation method. The
application of the proposed methodology allows us to generate sev-
eral log-facies profiles at well location and to estimate the most
probable facies classification and the associated uncertainty via

entropy computation. The so-obtained classifica-
tion includes petrophysical properties and acous-
tic/elastic attributes to directly link log-facies to
seismic velocities used in facies simulation con-
strained by seismic information. This workflow
represents a rigorous starting point to propagate
the well-facies classification and related uncer-
tainty to the entire reservoir modeling. These
obtained uncertainties are more realistic inputs
to reservoir modeling, in contrast to taking log
data as fixed and certain (so-called “hard data”
in geostatistics). The method has been illustrated
on real well-log data sets in clastic environments
but can be applied to different scenarios.
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APPENDIX A

FORMATION EVALUATION
ANALYSIS EQUATIONS

We recap here the basic equations for formation evaluation ana-
lysis (Darling, 2005; Ellis and Singer, 2007). Starting from well-log
measurements, formation evaluation computes volumetric curves of
the corresponding formation components. Assuming a unitary
investigated total volume,

XN
h¼1

vh ¼ 1; (A-1)

where 0 < vh < 1 is the volumetric fraction of the single hth com-
ponent and N is the total number of minerals and fluids defining the
modelled formation.
Fundamental in dealing with response-equations is the knowl-

edge of how clay is handled and the concept of wet versus dry clay.
Here, we take the clay as wet, so the volume fraction vclay is in-
tended to consider this phase composed of dry clay and associated
bound water. As already mentioned, well-log measurements could
be affected by the existing step invasion profile due to the circulat-
ing mud fluid. The mud invasion divides the formation into two
separated parts: (1) the flushed zones (XO) and (2) the unflushed
deep zone (DE). Well-logs tools have different depths of investiga-
tion and can be influenced only by one zone (shallow reading-log
tools and deep reading logs) or by both zones; then, their response
can contain terms for only one or for all formation components.
Mathematically this is taken into account by a special factor
0 < ψ i < 1 called the invasion factor, which controls how much in-
fluence for each log i (such as neutron porosity or density) comes
from the XO zone. The remaining influence (1 − ψ i), comes from
the DE zone. In well-log interpretation processes it is common to
assume a lateral homogeneity and, as a consequence, to assume that

Figure 20. Comparison of two different classifications. On the left (first two plots), we
show the eight-facies classification: maximum a posteriori of facies and Markov chain
classification (color codes are the same as in Figure 15). On the right, we show the
simplified three-facies classification (namely seismic facies classification, last three
plots): posterior probability distribution, entropy, and maximum a posteriori of facies
(shale in green, silty-sand in brown, sand in yellow).
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the sum of the fluid volumes in the flushed zone is equal to the sum
of fluid volumes in the unflushed zone

XNfluid

k¼1

ðvXOk
− vDEk

Þ ¼ 0; (A-2)

where the sum only considers the fluid involved.
Other constraints involve the feature of the mud used. For exam-

ple, when oil-based mud is used, the invading fluid is hydrocarbon.
Therefore, we must impose a constraint that limits the volume of
water in the flushed zone to be less than or equal to the volume
of water in the undisturbed zone on the basis of the normal re-
sponse-equations. The reverse is true for water-based mud.
Finally, it is also possible to limit the sum of the fluid volumes to

be less than a particular critical porosity. This critical porosity is the
value that marks the limit between a saturated rock and a suspension
and will also be relevant for the RPM (Appendix B).
In general, a response equation is a mathematical description of

how a given measurement mi (where i is the generic index to iden-
tify a well-log type) varies with respect to each formation compo-
nents. The simplest linear response-equations are of the form

miðvÞ ¼
XNsolid

j¼1

m̃jvj þ ð1 − ψ iÞ
XNfluid

k¼1

m̃XOk
vXOk

þ ψ i

XNfluid

k¼1

m̃DEk
vDEk

; (A-3)

where m̃j, m̃XO, and m̃DE are the response parameters for the cor-
responding formation components. This form is typical for neutron,
density, and sonic logs. As gamma ray log only considers solid
components, it is not affected by invasion and the response equation
does not involve the invasion factor.
On the other hand, the resistivity/conductivity model used is non-

linear and, in our formation, we consider two different log measure-
ments: one related to the flushed zone (shallow reading log) and the
other in the undisturbed zone (deep reading). The response-
equations are the same for both situations, but the parameters
involved depend on the investigated zone.
For conductivity C, we consider the theoretical form of the In-

donesian equation (Poupon and Leveaux, 1971) because it is widely
used in shaly sand formations:

ffiffiffiffi
C

p
¼

� ffiffiffiffiffiffiffiffiffiffi
Cclay

p
v
ð1−1

2
vclayÞ

clay þ
ffiffiffiffiffiffi
Cw

p ffiffiffi
a

p ϕ
1
2
ðmþm2

ϕ Þ
��

vw
ϕ

�n
2

; (A-4)

where Cclay and Cw are the specific conductivities of clay and water,
respectively; vw is the volume of water; and the parameters m, m2,
n, and a come from empirical observations.

APPENDIX B

ROCK PHYSICS EQUATIONS

Granular media models are based on Hertz-Mindlin contact the-
ory (Mavko et al., 2009) and they provide estimates for the bulk
KHM and shear moduli μHM of the dry rock, assuming that the frame
is a dense random pack of identical spherical grains subject to an
effective pressure P with a given critical porosity ϕ0 and an average

number of contacts per grain n. Critical porosity is the value which
marks the porosity limit between a saturated rock and a suspension.
Here, we recap the set of equations of the soft sand model used in
the application case.
First Hertz-Mindlin equations are given by

KHM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P½nð1 − ϕ0Þμmat�2
18½πð1 − νÞ�2

3

s
(B-1)

μHM ¼ 5 − 4v
5ð2 − vÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3P½nð1 − ϕ0Þμmat�2

2½πð1 − νÞ�2
3

s
; (B-2)

where ν is the grain Poisson’s ratio, namely

v ¼ 3Kmat − 2μmat

2ð3Kmat þ μmatÞ
; (B-3)

and Kmat and μmat are the solid phase (zero porosity) elastic moduli.
For porosity values ranging between zero and the critical poros-

ity, the soft sand RPM connects the grain elastic moduli Kmat and
μmat with the elastic moduli KHM and μHM of the dry rock at critical
porosity. This is done by interpolating these two end members in the
intermediate porosity values by means of a heuristic-modified
Hashin-Shtrikman lower bound:

Kdry ¼
� ϕ

ϕ0

KHM þ 4
3
μHM

þ
1 − ϕ

ϕ0

Kmat þ 4
3
μHM

�−1

−
4

3
μHM (B-4)

μdry

� ϕ
ϕ0

μHM þ 1
6
ξμHM

þ
1 − ϕ

ϕ0

μmat þ 1
6
ξμHM

�−1

−
1

6
ξμHM (B-5)

ξ ¼ 9KHM þ 8μHM
KHM þ 2μHM

: (B-6)

On the other hand, the stiff-sand model connects the two
end-members with the modified Hashin-Shtrikman upper bound
(Mavko et al., 2009). Gassmann’s equation is then used for calcu-
lating the effect of fluid

Ksat ¼ Kdry þ

�
1 − Kdry

Kmat

�
2

ϕ
Kfl

þ 1−ϕ
Kmat

− Kdry

K2
mat

(B-7)

μsat ¼ μdry; (B-8)

where Kfl is the fluid bulk modulus, and Ksat and μsat are the
rock-saturated moduli. Fluid properties can be obtained by means
of Batzle-Wang formulas (Batzle and Wang, 1992), a set of empiri-
cal equations that allows calculating bulk moduli and densities of
fluid components starting from fluid analysis parameters (such as
gas gravity, oil gravity, gas-oil-ratio, temperature, and pressure).
Finally, velocities are obtained as follows:
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VP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ksat þ 4

3
μsat

ρ

s
(B-9)

VS ¼
ffiffiffiffiffiffiffi
μsat
ρ

r
; (B-10)

where ρ is the fluid-saturated bulk density.
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