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Probabilistic physics-informed neural network

for seismic petrophysical inversion

ABSTRACT

The main challenge in the inversion of seismic data to predict the petrophysical properties of
hydrocarbon-saturated rocks is that the physical relations that link the data to the model properties
are often non-linear and the solution of the inverse problem is generally not unique. As a possible
alternative to traditional stochastic optimization methods, we propose to adopt machine learning
algorithms by estimating relations between data and unknown variables from a training dataset
with limited computational cost. We present a probabilistic approach for seismic petrophysical

inversion based on physics-informed neural network with a reparameterization network. The

This paper presented here as accepted for publication in Geophysics prior to copyediting and composition.
© 2024 Society of Exploration Geophysicists



Page 3 of 69 GEOPHYSICS

NoubhwN-=0O

rms,of Use at http:/library.seq.ora/pagglpalicigsferns, o v —
N = O OV

novelty of the proposed approach includes the definition of a physics-informed neural network

algorithm in a probabilistic setting, the use of an additional neural network for rock physics model

hyperparameters estimation, and the implementation of Approximate Bayesian Computation to

quantify the model uncertainty. The reparameterization network allows us to include unknown

model parameters, such as rock physics model hyperparameters. The proposed method predicts

the most likely model of petrophysical variables based on the input seismic dataset and the training

dataset and provides a quantification of the uncertainty of the model. The method is scalable and

can be adapted to various geophysical inverse problems. We test the inversion on a North Sea

dataset with post-stack and pre-stack data to obtain the prediction of petrophysical properties.

Compared to regular neural networks, the predictions of the proposed method show higher

accuracy in the predicted results and allow us to quantify the posterior uncertainty.

INTRODUCTION

The expression “seismic petrophysics inversion” generally refers to the prediction of

petrophysical properties such as porosity and rock and fluid volumes from seismic data. This

method has been implemented in a multitude of approaches, the most common one being a two-
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step inversion consisting of traditional inversion of seismic data for the estimation of seismic

velocities (either acoustic inversion of post-stack data or elastic inversion of pre-stack data) and

inversion of seismic velocities for the prediction of petrophysical properties (Doyen, 2007;

Azevedo and Soares, 2017; Grana et al., 2021). The inversion generally requires a forward physical

model. In reservoir characterization, the seismic forward model is often assumed to be a

convolutional one, and the petrophysical forward model is a rock physics model. Alternatively,

the inversion can be performed in a single step by combining the forward models (Azevedo and

Soares, 2017; Grana et al., 2021).

Due to the uncertainty in the measured data and the physical models, the inverse problem is

often ill-posed and the solution is generally non-unique. A common approach is to frame the

inverse problem in a probabilistic setting to quantify the uncertainty of the model predictions.

Grana et al. (2022) summarize the methods of probabilistic inversion into four classes: Bayesian

analytical methods, Monte Carlo methods, stochastic optimization methods, and probabilistic deep

learning methods. Generally, analytical algorithms (Buland and Omre, 2003; Grana and Della

Rossa, 2010; Grana et al., 2017; Fjeldstad and Grana, 2018) are computationally efficient but they

largely require assumptions about the linearization of the forward model or analytical probability

© 2024 Society of Exploration Geophysicists
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distributions of the model variables and data errors. Monte Carlo methods (Mosegaard and

Tarantola, 1995; Bosch et al., 2007; Connolly and Hughes, 2016; Sen and Biswas, 2017; Zhu and

Gibson, 2018; De Figueiredo et al., 2019a,b; Stuart et al., 2019) allow estimating the unknown

posterior distribution of the model variables by sampling from a proposal distribution. Stochastic

optimization algorithms such as genetical algorithms, simulating annealing and particle swarm

optimizations (Sen and Stoffa, 2013; Aster et al., 2018; Grana et al., 2021) can also be used to

estimate the solution of the inverse problem. Monte Carlo methods and stochastic optimization

algorithms are generally applied to non-linear inverse problems and/or when the distribution of the

model variables is not Gaussian; however, these methods are more computationally expensive than

analytical methods. Furthermore, the uncertainty assessment might not be precise if a prior

distribution of the model variables is not chosen accurately.

In recent years, machine learning (ML) or deep learning (DL) methods have emerged as a

possible alternative (Dramsch, 2020; Bhattacharya, 2021; Bhattacharya and Di, 2022) for

automatically mapping relations between measured data and model variables without significant

computational cost and prior assumptions. In particular, supervised learning methods allow us to

derive the relation between the data and the properties of interest from training data without the

© 2024 Society of Exploration Geophysicists
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use of a physical forward model. Several deep learning algorithms have been adopted in

exploration geoscience applications, including fault detection (Hale, 2013; Xiong et al., 2018; Wu

et al., 2018), facies classification (Matos et al., 2007; Wrona et al., 2018; Alaudah et al., 2019; Liu

et al., 2020), porous media modeling (Kamrava et al., 2020, 2021), seismic inversion (Das et al.,

2018; Mosser et al., 2018; Alfarraj and AlRegib, 2019a,b), and petrophysical characterization

(Shahraeeni and Curtis, 2011; Shahraeeni et al., 2012; Das and Mukerji, 2020; Verma et al., 2021;

Bhattacharya, 2022; Vashisth and Mukerji, 2022). Furthermore, deep learning methods have been

combined with probability theory to quantify the model uncertainty (Sengupta et al., 2020; Feng

etal., 2021; Yang et al., 2021; Daw et al., 2021; Mosser and Naeini, 2022).

The application of ML and DL algorithms to geophysical applications still has several

challenges such as insufficient training data to fit the complex relations between observations and

target model variables. For example, in seismic petrophysical inversion, the size of the seismic

data (observations) is orders of magnitude larger than the dimension of labeled model variables

from well logs measurements (target model variables) due to the high cost of drilling wells,

especially in the exploration area. Another challenge is that the training dataset might be biased by

the location of the wells which might not account for all possible rock and fluid types. In addition,

© 2024 Society of Exploration Geophysicists

Page 6 of 69

This paper presented here as accepted for publication in Geophysics prior to copyediting and composition.



Page 7 of 69

NoubhwN-=0O

s,0f Use at http:/library.seq.ora/pagelpglicigsferins, o v —
- O O ®©

r
N

This paper presented here as accepted for publication in Geophysics prior to copyediting and composition.

GEOPHYSICS

many deep learning methods do not account for uncertainty quantification due to the high accuracy

of the most likely models, however, in geophysical inverse problems data errors and model

heterogeneity generally lead to high uncertainty in model predictions.

We propose a probabilistic physics-informed neural network (P-PINN) algorithm for seismic

petrophysical inversion with the goal of estimating the most likely model of petrophysical

properties, the unknown hyperparameters of the rock physics model, and the uncertainty of the

model predictions. Physics-informed neural networks (PINN) method is a subclass of deep

learning algorithms that integrate data and physical mathematical models and implement them

through neural networks or other kernel-based regression networks (Karniadakis et al., 2021).

Unlike the work by Karniadakis et al. (2021), the proposed approach does not adopt partial

differential equations, since the physics is based on geophysical models consisting of algebraic

equations. Compared to other ML or DL algorithms, PINN algorithms have the advantage of

incorporating prior knowledge and/or physical constraints into the networks. PINN algorithms

have already been used in geophysical inversion for acoustic impedance inversion (Alfarraj and

AlRegib, 2019a) and elastic impedance inversion (Alfarraj and AlRegib, 2019b; Biswas et al.,

2019). Furthermore, PINN have been used for solving partial differential equations (PDE) in

© 2024 Society of Exploration Geophysicists
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seismic wave equation (Karimpouli and Tahmasebi, 2020), acoustic wave propagation equation,

and full waveform inversion (Rasht-Behesht et al., 2022), as well as joint petrophysical inversion

of seismic and resistivity data (Liu et al., 2023). In this work, we formulate PINN in a new

probabilistic setting and define a P-PINN for seismic petrophysical inversion and petrophysical

uncertainty quantification. The framework of the proposed method includes an inverse network to

estimate the relations between seismic data and reservoir model variables, a reparameterization

network to estimate the rock physics model hyperparameters in the forward model (e.g., rock

physics parameters), and a forward model to integrate the physics models in the network. The

novelty of the method also includes the implementation of PINN with an additional neural network

for rock physics model hyperparameter estimation of the model and Approximate Bayesian

Computation (Beaumont et al., 2002) for uncertainty quantification. The reparameterization

network allows for estimating the rock physics model hyperparameters of the rock physics models

and quantifying the uncertainty. The proposed P-PINN provides a general framework where the

inverse network, the reparameterization network, and the forward model can be modified to adapt

to different geophysical models. We apply the method using a North Sea sandstone reservoir

dataset, to validate the method in a univariate model setting (e.g., prediction of porosity from post-

© 2024 Society of Exploration Geophysicists
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stack seismic data) and multivariate model setting (e.g., prediction of petrophysical properties from

pre-stack seismic data).

THEORY

The general form of the inverse problem aims at predicting the model variables m from
measured data d according to the governing physical operator F:
d =F(m) +e,

(D
where e represents the measurement errors. In non-linear optimization methods, the goal is to find
the value m that minimizes the misfit between the measured data d and geophysical model
prediction d:

m= argminm(Hd —d ||)

(2)
In the context of inverse problems, deep learning methods are used to find an approximation of
the inverse operator G=F ~! and minimize the difference between the predicted output 771 and the

target variables m on a training dataset:

© 2024 Society of Exploration Geophysicists
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m = G(d;0)
3)
where 0 represents the training parameters in the neural networks (i.e., weights and biases).

We propose a new method based on a probabilistic approach to PINN, namely P-PINN for
seismic petrophysical inversion that combines the prediction of the most likely model and the
estimation of the rock physics model hyperparameters as well as their uncertainty. The architecture
includes a physics-informed deep neural network that consists of an inverse network and a forward
model, and a reparameterization network (Figure 1). In this setting, d denotes the seismic data, m;,
denotes the petrophysical properties from well-log data (labeled data), d; denotes the
corresponding seismic data with respect to my, A denotes rock physics model hyperparameters,
and d, 1;L, A denote the estimated seismic data, petrophysical properties and rock physics

model hyperparameters, respectively.

Physics-informed neural network
To find the optimal estimation of G=F ~1, the training parameters @ are learned either in a

supervised or unsupervised manner. In the context of seismic petrophysical inversion, supervised

This paper presented here as accepted for publication in Geophysics prior to copyediting and composition.
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learning requires a training dataset consisting of a set of seismic and petrophysical property pairs [
dy, m;]. The learning process is performed by minimizing the petrophysical loss function L,(8)

between the predicted model variables 7 and target (labeled) model variables m:

Ly(8) = Y, C(G(d1;6)m,)

i=1

“4)
where n represents the number of training samples and C represents the dissimilarity metric, such
as the mean squared error (MSE) in a regression problem or cross-entropy in a classification

problem.
In the proposed PINN, the physical constraints are embedded in the neural network by adding
a seismic loss function Lg(0) based on the forward model F. Seismic data are the input of the
neural network to obtain estimates of the model variables (i.e., G(d;0)), that are then the input of
the forward model F to obtain the predictions of the seismic data (i.e., F(G(d;0))). The misfit

between the measured and predicted seismic data is then the additional loss term Ly(0):

Li(8) = ) C(F(G(d:0).d).

i=1

(&)

This paper presented here as accepted for publication in Geophysics prior to copyediting and composition.
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The total loss function can then be written as:
L:(0) = aL,(0) + BLy(O)

(6)
where a and f are tuning parameters to control the influence of each loss function. The neural
network is trained by minimizing the total loss function L.(0). After sufficient training, an optimal
function @ is built to map measurements d into model variables m. The operator § is used for the
model variables predictions m,, when the unseen measurements d,, are given to neural networks.

m,=g (dpFe)-

(7)

Model hyperparameter estimation

One of the advantages of PINN is that it can provide not only an estimate of the optimal values
of the model variables but also an estimate of rock physics model hyperparameters of the forward
model. For example, some rock physics parameters 4 in the forward operator, such as critical
porosity and coordination number in granular media models or aspect ratio in inclusion models

(Mavko et al., 2020), might be unknown in certain applications. These parameters are often defined

This paper presented here as accepted for publication in Geophysics prior to copyediting and composition.
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based on indirect measurements, core sample images, or nearby field studies. In this work, we
estimate the rock physics model hyperparameters from the data simultaneously with the inverse
mapping approximation §G(d;0,4) within the PINN. Hence, the loss function in Equation (5) is

reformulated as:
L(0.2) = ) L(F(G(:6,1),a)),

(8)
and the total loss function in Equation (6) can be rewritten as:
L:(0,A) = aL,(0) + BLs(0,4).
©)
Then the total loss L;(0,4) is minimized by training the neural network and the model variables
predictions are obtained by applying the operator § with the optimal parameters A:
m, = G(d,;0,2).

(10)

Bayesian formulation

To quantify the uncertainty associated with the neural network, a probabilistic approach can

This paper presented here as accepted for publication in Geophysics prior to copyediting and composition.

© 2024 Society of Exploration Geophysicists



NoubhwN-=0O

s,0f Use at http:/library.seq.ora/pagelpglicigsferins, o v —
- O O ®©

r
N

GEOPHYSICS

be applied by formulating the estimation of the parameters @ of the neural network P (0 | D) given

the data D in a Bayesian framework as :

P(D|6)P(0)

P(6|D) = P(D)

(11
When the forward model includes unknown hyperparameters A, equation 11 can be rewritten to
compute the posterior probability distribution P(6,4 | D) of the neural parameters 6 and

hyperparameters A:

P(D|6,0)P(6,2) P(D|6,2)P(0)P(A)
P(D) P(D)

P(6,A|D) =
(12)
where we assume that the neural parameters 8 and hyperparameters A are independent.

We address the estimation of the posterior distribution in equation 12 using the Approximate
Bayesian Computation (ABC). ABC is a class of Bayesian statistics methods which approximate
the likelihood function with Monte Carlo simulation, and the outcomes of estimations are accepted
or rejected according a rejection algorithm (Beaumont et al., 2002; Csilléry et al., 2010; Sunndker

et al., 2013; Fernandez et al., 2022). In the proposed approach, at each simulation, the parameters

0 and A are first sampled from the prior distribution, a prediction D given 6 and A is then obtained

© 2024 Society of Exploration Geophysicists
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through the neural network model. D is accepted if it the acceptance criterion is satisfied:
pa(D,D) < e

(13)
where pgq measures the distance between D and D based on a given metric and the threshold €
represents a tolerance value. The posterior uncertainty is generally affected by the tolerance value
€. By running MC simulations, the posterior distribution is approximated from the accepted
models. ABC can be also used for Bayesian model comparison by calculating the posterior ratio
of the models and defining a parameter K that assesses the plausibility of two different models M

and M:

~ P(M;| D)

AR
(14)
The posterior ratio K is related to the Bayes factor if the prior models of P(M,) and P(M) are
equal.
The ABC method is based on a Monte Carlo simulation that does not require the explicit
evaluation of the likelihood function, which is a great advantage especially for the cases where the

likelihood model is analytically intractable. The main limitation of the proposed approach is that

© 2024 Society of Exploration Geophysicists
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the posterior uncertainty might depend on the tolerance value. If the tolerance value is too large,

the method tends to accept a large number of models (i.e., the prior model is dominant with respect

to the data), whereas if the tolerance value is too small, the method tends to accept a small number

of models (i.e., the data are dominant with respect to the prior model).

Network architecture

In the context of geophysical inverse problems, the inverse problem aims to estimate the

relation between the measured data and the petrophysical model variables, and the forward model

aims to embed the seismic and rock physics equation in an unsupervised loss function. The inverse

model consists of two deep neural networks: an inverse network (Figure 2a) and a

reparameterization network (Figure 2b), for the estimation of petrophysical model variables and

of the rock physics model hyperparameters respectively. If the model parameters can be accurately

assessed from core measurements, the reparameterization network can be simplified or removed.

The inverse network is extended from the network proposed in Alfarraj and AlRegib (2019a,b)

(Figure 2a). The inverse network includes four blocks: Sequential block, Local pattern block,

Upscaling block, and Regression block. The Sequential block is designed with three layers of gated

This paper presented here as accepted for publication in Geophysics prior to copyediting and composition.
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recurrent units (GRUs) to capture the low-frequency trend in the input-output relations. The Local

pattern block is designed with three 1D convolutional layers followed by a 1D convolutional layer

to capture the high-frequency content in the training data. The Upscaling block is designed with

two deconvolution layers to balance the resolution mismatch between seismic data (unlabeled) and

well (labeled) data. The Regression block is designed with a GRU followed by a fully connected

(FC) layer to regress the generated feature from previous layers to the target domain.

In addition to the inverse network, a reparameterization network is also included in the inverse

model. The reparameterization network consists of three FC layers (Figure 2b). In the case of

seismic petrophysical inversion, the rock physics model hyperparameters are estimated through

this neural network and the outputs are passed to the forward model.

APPLICATION

To validate the proposed method, we test the inversion on a dataset from an oil-saturated clastic

reservoir in the North Sea. The dataset includes well-log data and 2D simulated maps of porosity,

clay volume, and water saturation (Dvorkin et al., 2014). The dataset represents a clastic reservoir

with a sequence of oil-saturated sandstone layers alternating with non-reservoir shale layers. A 0

This paper presented here as accepted for publication in Geophysics prior to copyediting and composition.
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incident angle seismic dataset and a partially stacked seismic dataset were generated using rock

physics relations combined with seismic convolutional models. The goal of the application is to

predict reservoir petrophysical properties from seismic data by using the proposed probabilistic

PINN method with a limited training dataset. To evaluate the performance of the proposed method,

we first test the method for a univariate inverse problem (i.e., porosity) and then extend it to a

multivariate setting (i.e., porosity, clay volume, water saturation).

Synthetic example: univariate case

In the first example, porosity is the unknown variable of interest, and we assume that the other

variables are known. We create a synthetic seismogram by applying the soft sand model (Dvorkin

and Nur, 1996) to calculate the dry-rock elastic moduli, Gassmann’s equation to calculate the

saturated-rock elastic moduli, and a convolutional model of the 0° incident angle for the reflection

coefficients. The wavelet used in the convolutional model is a Ricker wavelet with dominant

frequency of 30 Hz. We also add random noise to the seismic data to mimic the measurement

errors. The signal-to-noise ratio is 5. The 1D profile at the well location used as a reference model

is shown in Figure 3. The reference porosity section and seismic data section (Dvorkin et al., 2014)

© 2024 Society of Exploration Geophysicists
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are shown in Figure 4 and include 337 traces. We randomly extract a subset of 30 traces from both
seismic data and porosity model as the input-target pairs of the training dataset and split them into
two groups of 24 traces for training and 6 traces for validation, respectively. The target
petrophysical properties are converted into the time domain for consistency with seismic data.
We first demonstrate the application of the P-PINN network and compare it to a traditional
neural network (NN) without physical constraints. The same training parameters are used for the
two training processes with the only difference that a physics-informed loss function is added to
the P-PINN network. In the ABC, we adopt the Mean Absolute Error (MAE) between true
properties and predicted properties as the threshold for the acceptance / rejection criterion. We
then run 500 simulations and the models that satisfy the threshold (pg,,, < 0.015) are accepted
and the others rejected. In this application, 92 models are accepted with the regular NN and 149
models are accepted using the P-PINN with Bayes factor K = 1.62, showing the higher relative
plausibility of the P-PINN model. Figure 5 illustrates the comparison of the 1D predictions of the
regular NN (Figure 5a) and P-PINN (Figure 5b). The predicted results obtained with the P-PINN
show an improvement in terms of prediction accuracy and a smaller uncertainty range. We

calculated three metrics, correlation coefficient, the determination coefficient R2, and the MAE, of

© 2024 Society of Exploration Geophysicists
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the true and estimated properties. The metrics between the true model and the estimated models

obtained with the P-PINN and regular NN network are compared in Figure 6.

The inversion is then applied to the 2D section in Figure 4b. The mean and standard deviation

of the 2D inversion results for porosity are shown in Figures 7 and 8 respectively. Overall, the P-

PINN produces more accurate predictions with a smaller difference between true and predicted

porosity (Figure 7). Due to the higher accuracy of the P-PINN, the standard deviation of porosity

obtained using P-PINN is smaller (Figure 8). Compared to regular NN, the P-PINN predictions

provide better lateral continuity consistent with geological processes, which shows the advantage

of incorporating physics models into the neural network.

In this example, we assume that one rock physics model hyperparameter is unknown, namely

the coordination number of the rock (i.e., the average number of contacts between mineral grains)

and we estimate it using the P-PINN. The true value used in the soft sand model to generate the

synthetic seismic dataset is 7 according to the literature values presented for idealized models of a

random pack of spherical grains (Dvorkin et al., 2014). The estimated distribution of the

coordination number is shown in Figure 9, with a mean equal to 6.91 and a standard deviation as

of 0.434. The posterior distributions of the weights of the regular NN and P-PINN are also shown

© 2024 Society of Exploration Geophysicists
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in Figure 10. For simplicity, only the weights of the last regression layer are shown.

Synthetic example: multivariate case

In the second example, we test the proposed method in a multivariate setting, where the model
variables of interest are porosity, clay volume, and water saturation. The reference well-log data
are shown in Figure 11. We adopt three incident angles (15, 30°, 45°) to mimic the near, mid, and
far angle stacks of the partially stacked seismic dataset. The elastic properties are calculated using
the soft sand model with Gassmann’s equation and the seismic data are computed by convolving
the known source wavelet with the amplitude variation-versus-offset (AVO) approximation of the
reflection coefficients (Aki and Richards, 2002). The wavelet is a Ricker wavelet with dominant
frequency of 30 Hz. The seismic dataset with random noise is shown in Figure 12, with an average
signal-to-noise ratio of 5. The true porosity section and synthetic seismic section are shown in
Figure 13 and Figure 14. As in the previous example, 30 traces of input—target properties are
extracted as the training dataset with a train-validation ratio of 0.8. In the ABC, we apply the
following MAE threshold: pg,,, <0.019 and pg,, < 0.095 and pyg,, < 0.081, for applying

acceptance / rejection. We run 100 simulations and 39 simulations are accepted using regular NN
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and 69 simulations are accepted using P-PINN with Bayes factor K of 1.77.

Figure 15 illustrates the comparison of 1D predictions of the regular NN (Figure 15a) and P-

PINN (Figure 15b) by applying ABC. Overall, the P-PINN provides more accurate results with a

smaller difference between true and predicted properties. In particular, the prediction of water

saturation is more accurate in the hydrocarbon layers. The comparison of the metrics distributions

(correlation and determination coefficients and MAE) between true and accepted models of the

three variables are shown in Figure 16 for both regular NN and from P-PINN. Overall, the most

likely models from P-PINN have higher correlation coefficient, higher R? and lower MAE

compared to models obtained with the regular NN. Figures 17 and 18 illustrate the mean and

standard deviation of the model variables obtained with NN and P-PINN, respectively. Overall,

the P-PINN allows the prediction of both low and high frequency information from the data. The

P-PINN results show a smaller standard deviation for all three variables, which indicates lower

uncertainty in the prediction results.

In this example, we assume two unknown rock physics hyperparameters, namely the critical

porosity and the coordination number and we estimate them using the P-PINN. To generate the

reference synthetic seismic data, we used a critical porosity of 0.4 and a coordination number of
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7. The estimated distributions of the two rock physics model hyperparameters are shown in Figure
19. The predicted coordination number is 6.92 with a standard deviation of 0.129 and the predicted
critical porosity is 0.408 with a standard deviation of 0.0051. The posterior distributions of the
network weights are shown in Figure 20 for regular NN and P-PINN. Only the weights from the

last regression layer are demonstrated for simplicity.

Additional examples

In this section, we present two additional applications. In the first example, we adopt the model
in Figure 13 where we impose the oil-water contact (OWC) at 1.85 s to mimic the presence of oil-
and water-saturated rocks within the main reservoir layer. A synthetic seismic dataset is generated
with the same forward model used in the previous example (Figure 21). We apply the ABC with

the following MAE thresholds: pg , < 0.02 and pg,,, < 0.11 and pg,,, < 0.05. We run 100

cla;
simulations: 31 simulations are accepted using regular NN and 36 simulations using P-PINN with
Bayes factor K of 1.16. The comparison between the inverted properties from regular neural

networks and from P-PINN is shown in Figures 22 and 23. Overall, both inversion results are

accurate, however the P-PINN method provides lower standard deviations, which means less
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uncertainty in the predicted results.

In the second example, we invert a real dataset of a 2D seismic section with three partial angle

stacks (Figure 24). The real dataset represents a complex clastic reservoir in the North Sea with a

sequence of sand and shale layers. The reservoir is partially filled by oil with an irreducible water

saturation of approximately 0.12. The average porosity in the reservoir rocks is 0.21 with limited

variations in clay content between 0.8 and 0.22. The wavelets for the three angle stacks are

extracted from the dataset using a statistical approach. The signal-to-noise ratio varies between 2

and 3. We apply the proposed P-PINN method with two wells which contain petrophysical

properties as the training labels. The forward model is as that used in the previous example. In this

case, we apply the ABC with MAE thresholds: pg < 0.033 and pg,,, < 0.032 and pg,,,

< 0.063. We run 100 simulations: 21 simulations are accepted using regular NN and 29

simulations using P-PINN with Bayes factor A of 1.38. The inversion results are compared in

Figures 25 and 26 in terms of the mean and the standard deviation of the accepted realizations.

The inversion results for the regular NN are slightly smoother and with higher standard deviations,

whereas the P-PINN better captures some property transitions and estimates a lower uncertainty

in the results.
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We quantify the performance of the neural network methods using three metrics: correlation

coefficient, R2, and mean absolute error (MAE). The values of these metrics for the univariate case

are shown in Table 1 and the values for the multivariate case are in Table 2. Compared to the

regular NN, overall improvements for all the model variables obtained by the P-PINN are observed,

i.e., higher correlation coefficient and R? and lower MAE.

The proposed method is scalable and largely adaptable to different inverse problems by

combining the main components of the model, namely the inverse network, reparameterization

network, and forward model. For example, the proposed inverse network could be replaced by any

other neural network such as convolutional neural network (CNN), recurrent neural network

(RNN), Fully connected layers (FC layers), or a combination of them. Similarly, the

reparameterization network could be replaced by constant values or spatial functions if the

parameters are known or can be estimated from other data and the forward model can be substituted

with any physical-mathematical relation. The method can be naturally extended to 3D and time-

lapse datasets, but the uncertainty quantification study might be limited by the computational costs

of multiple simulations for large datasets.
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CONCLUSIONS

We presented a probabilistic approach to physics-informed neural network for seismic

petrophysical inversion for the simultaneous estimation of the unknown model variables and the

rock physics model hyperparameters. The probabilistic approach adopted for the PINN allows us

to quantify the uncertainty in the model variables predictions and parameters estimation. The

uncertainty quantification approach is formulated in a Bayesian framework where the posterior

distribution of the training parameters (i.e., weights and biases) and the forward model parameters

(e.g., rock physics parameters) are assumed to be probability distributions. The posterior

distribution is computed using Bayes’ rule by sampling the training and forward model parameters

from the prior and accepting or rejecting the models using the ABC approach. The novelty of the

method is the implementation of an additional neural network for hyperparameter estimation in

the PINN network and ABC for uncertainty quantification. The proposed method can be embedded

in the network known or partially known physics relations and it is easily scalable. We validated

the proposed method with univariate and multivariate models and in both cases, the P-PINN

provide more accurate and more precise (i.e., less uncertain) predictions. In both cases, the rock

physics model hyperparameters are accurately estimated. The presented examples show the
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applicability of the methodology and demonstrate the potential of the proposed approach. This
method can be applied to various uncertain parameters, such as wavelet dominant frequency, fluid
and mineral properties, and reservoir conditions, and it can be applied to multiple reservoir
variables including fracture properties, mineral volumes, and partial saturations. The main
advantage of the proposed approach is the probabilistic formulation that allows us to quantify the

uncertainty in the predictions of the model variables and hyperparameters.

APPENDIX: FORWARD GEOPHYSICAL MODEL

For the rock physics component of the forward geophysical model, we adopt the soft sand (or
unconsolidated sand) model (Dvorkin et al., 2014), whereas for the seismic component we adopt
the AVO model based on the convolution of a wavelet with Aki-Richards’ equations.

The soft sand model first computes the bulk and shear moduli of the dry rock, K4, and pgry,

using Hertz-Mindlin equations and Hashin-Shtrikman modified lower bounds as:

3 Cz(l - ¢)2.usolz
KHM = P

187T2(1 - 1/sol)z
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_ 5— 4'Vsol 3 3C2(1 - d))z.usolz
HHM = 5(2 - Vsol) 27'[2(1 — 1/501)2

-1

@ )
b b 4

Kpym + 3HHM Ko + 3HHM

s 9
3 P N 0P .UHMf
Hdry = UHM HHM 6 °HM

Unm + Ts( HM  Msol T Tf HM

f _ 9Ksol + 8.usol
M= Ksol + 2I'lsol

(AD)
where Ky and pgy are the Hertz-Mindlin moduli and shear moduli at the critical porosity, ¢ is
the porosity, ¢ represents coordinate number, ¢, the critical porosity, pg,; the shear moduli of the
solid phase, v4,; the Poisson’s ratio of solid phase, and P is the effective pressure.

The model combines the dry moduli in equation A1 with Gassmann’s equations to compute

the bulk and shear moduli of the saturated rock K, and prgq:
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2

(-5
Ksol

¢, (-9 Kip

Kgar = Kdry +

Kfl Kol Ksolz

Usat = Hdry
(A2)
where K, is the bulk modulus of the fluid phase. The P- and S- wave velocity V,, and V are then

computed as:

4
Vp — Ksat + §ﬂsat

p

Usat

V= |5

(A3)
where p = (1 — @)psor +@py1 is the density of the saturated rock and is computed using a mass
balance of the density of the solid and fluid phases p,; and py; weighted by porosity.

We then use the Aki Richards AVO equation to calculate the reflectivity coefficients at each

interface time value as a function of the incident angle 6:

1
rpp(8) = 5(1 + tan? 9)— — 4—sin? 6— + 5|1 — 4—sin’ ¢

AV, VS AV, 1 Vs Ap
y Ve 2 v,
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(A4)
where V_p is the average P-wave velocity across the interface, V_s is the average S-wave velocity
across the interface, p is the average density across the interface, AV, is the P-wave velocity
differential across the interface, AV is the S-wave velocity differential across the interface, and
Ap density differential across the interface.

Finally, the seismic signal s(8) for each incident angle 6 is computed as a convolution
between the wavelet w(8) and reflectivity coefficients r,,(8):
s(8) = w(0) * rpp(0).

(AS5)
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Correlation coefficient R2 MAE
NN 0.8612 0.7100 0.01411
Porosity
P-PINN 0.8717 0.7330 0.01404

Table 1: Comparision of performance metrics between the mean of the predictions

from regular NN and from P-PINN of the univariate inverse problem.
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o R2 MAE

coefficient
NN 0.777 0.563 0.018

Porosity
P-PINN 0.831 0.666 0.017
NN 0.712 0.432 0.082
Clay volume
P-PINN 0.755 0.548 0.075
NN 0.840 0.668 0.069
Water saturation

P-PINN 0.886 0.769 0.062

Table 2: Comparision of performance metrics between the mean of the predictions

from regular NN and from P-PINN of the multivariate inverse problem.
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Figure 20: Posterior distributions of weights from the last regression layer: a) weights from regular NN and
b) weights from P-PINN.
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Figure 24: Seismic data for the real case application. The dataset includes three partial angle stacks: Near
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Figure 25:
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Inversion results for the real case application: a) means from regular NN, and b) means from P-

PINN.
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3 Figure 26: Uncertainty of inversion results for the real case application: a) standard deviations from regular
R4 NN, and b) standard deviations from P-PINN.
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DATA AND MATERIALS AVAILABILITY

Data associated with this research are available and can be obtained by#xD;#xA;contacting the
corresponding author.
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