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ABSTRACT 

Time-lapse seismic data are generally used to monitor the changes in dynamic reservoir 

properties such as fluid saturation and pore or effective pressure. Changes in saturation and 

pressure due to hydrocarbon production usually cause changes in the seismic velocities and as a 

consequence changes in seismic amplitudes and travel times. This work proposes a new rock physics 

model to describe the relation between saturation-pressure changes and seismic changes and a 

probabilistic workflow to quantify the changes in saturation and pressure from time-lapse seismic 

changes. In the first part of this work, we propose a new quadratic approximation of the rock physics 

model. The novelty of the proposed formulation is that the coefficients of the model parameters (i.e. 

the saturation-pressure changes) are functions of the porosity, initial saturation, and initial pressure. 

The improvements in the results of the forward model are shown through some illustrative 

examples. In the second part of the work, we present a Bayesian inversion approach for saturation-

pressure 4D inversion, in which we adopt the new formulation of the rock physics approximation. 
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The inversion results are validated using synthetic pseudo-logs and a 3D reservoir model for CO2 

sequestration. 

INTRODUCTION 

During reservoir production, time-lapse seismic data can be used to monitor reservoir changes 

by repeatedly acquiring 3D seismic data (Lumley, 2001; Landrø, 2001; Calvert, 2005; Abriel, 2008; 

Thore and Hubans, 2012; Thore and Blanchard, 2015; Lumley et al., 2015; Bjørlykke, 2015; 

Maharramov et al., 2016). This monitoring method has been successfully applied in different field 

cases to indirectly measure pressure and saturation changes in hydrocarbon reservoirs and carbon 

dioxide sequestration studies (Landrø et al., 2003; Arts et al., 2004; Vedanti and Sen, 2009; Grude et 

al., 2013; Blanchard and Delommot, 2015). The estimation of saturation and pressure changes from 

time-lapse seismic data requires the knowledge of the physical relation that links the dynamic 

changes to the seismic changes (Abriel 2008). The changes in elastic properties can be generally 

predicted through a rock physics model and the corresponding changes in the seismic response are 

predicted through a wave propagation model (Avseth et al., 2005; Mavko et al., 2009; Dvorkin et al., 

2014).  

The saturation effect on seismic velocities can be generally described by Gassmann’s equation 

combined with the mass balance equation for density. In general, if water replaces hydrocarbon, the 

density of the saturated rock increases due to the higher density of water, the P-wave velocity 

increases due to the higher bulk modulus of water, and the S-wave velocity decreases since the fluid 

shear modulus is 0 and the fluid only affects the density in the S-wave velocity expression. For the 

pressure effect on seismic velocities, a comprehensive relation is still not available, but several 

empirical equations have been proposed (Eberhart-Phillips et al., 1989; MacBeth, 2004; Sayers, 

2006; Hofmann et al. 2005, among the others). In general, if effective pressure increases, the P-wave 

and S-wave velocity of the rock increase whereas the density remains approximately the same. Such 

increase is more significant at low effective pressure than high effective pressure. Indeed, many 
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models are based on exponential relations that tend to an asymptotical value for large pressure 

values. Assuming that the effective pressure is defined as the difference between the overburden 

pressure and the pore pressure, similar conclusions can be drawn for pore pressure changes. If the 

pore pressure increases, then the velocity generally decreases. Pore pressure affects the elastic 

properties of the fluid, as described by Batzle-Wang relations (Batzle and Wang 1992), but it is 

normally a secondary effect compared to the effect on the saturated rock. Differently from the 

saturation effect, the calibration of the pressure relations generally requires a set of laboratory 

measurements where the dry elastic moduli are measured at different effective pressure conditions 

(Han, 1986). The above-introduced rock physics models allow computing the changes in elastic 

properties when the initial and final saturation-pressure conditions are known. The seismic 

response, in terms of reflectivity, as well as amplitude and travel-time, can be approximated using a 

convolutional model (Aki and Richard, 1980; Stolt and Weglein, 1985; Buland and Omre, 2003). 

Many time-lapse inversion studies are performed in two steps (Buland and El Ouair, 2006; Doyen 

2007): first the changes in elastic properties are estimated from time-lapse seismic data; then, the 

changes in saturation and pressure are estimated from the changes in elastic properties estimated in 

the first step.  

Landrø (2001) presents a rock physics model approximation that expresses changes in density 

using a linear approximation in the changes in saturation, and changes in velocities using an 

approximation that is linear in the saturation changes and quadratic in the pressure changes. By 

combining this approximation with Aki-Richards linear approximation of the seismic reflectivity 

coefficients, Landrø (2001) derives an approximation of the changes in the reflectivity coefficients as 

a polynomial function of the changes in saturation and pressure. The time-lapse inversion can be 

solved very efficiently using gradient based methods. Successful applications have been proposed 

for hydrocarbon reservoirs (Landrø et al., 2003) as well as CO2 sequestration studies (Grude et al., 

2013). Other inversion methods such as stochastic optimization algorithms could be applied using 
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the same forward model in Landrø (2001). An example of stochastic inversion approach has been 

proposed in Veire et al. (2006). Improvements to this formulation have been subsequently proposed 

by Meadows (2001); Trani et al. (2011); Bhakta and Landrø (2014). Despite the common use of the 

formulation proposed by Landrø (2001), the method has some limitations. In particular, the 

approximation does not depend on porosity and does not depend on the initial saturation-pressure 

conditions but only on the property variations. 

In the first part of this work, we propose a new formulation of the changes in reflectivity 

coefficients based on saturation-pressure changes. The formulation is inspired by the work by 

Landrø (2001), but in the proposed new formulation, the polynomial coefficients are functions of the 

reservoir rocks porosity, the initial saturation, and the initial reservoir pressure. If a static model 

(before production) of porosity, saturation, and pressure is available, the rock physics model with 

spatially varying coefficients can be applied in the time-lapse inversion workflow. 

In the second part of this work, we use the new formulation in a Bayesian inversion scheme for 

the estimation of saturation-pressure changes from time-lapse seismic data. Because the proposed 

formulation is not linear, the Bayesian formulation presented in Buland and El Ouair (2006) cannot 

be applied; therefore, we adopt an ensemble-based method (Evensen, 2009; Emerick and Reynolds, 

2013). The goal of introducing an inversion method is to show the advantages in using the proposed 

formulation of the porosity-dependent rock physics model compared to traditional methods that 

assume constant porosity and initial reservoir conditions.  

The differences between the traditional models and the new formulation are shown through 

illustrative examples and synthetic pseudo-wells. An example of application in 3D is shown using a 

reservoir model for CO2 sequestration. 
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METHODOLOGY 

The methodology section is divided into three parts: review of existing rock physics models for 

saturation-pressure changes; new formulation of the rock physics model for saturation-pressure 

changes; Bayesian time-lapse inversion method. The first two parts focus on the forward rock 

physics model with the goal of deriving a more accurate approximation for time-lapse studies for 

saturation-pressure prediction, whereas the last part focuses on the inversion with the goal of 

showing the effect of the model accuracy on the inversion results. 

Literature review 

Rock physics models aim to predict the elastic response of saturated porous rocks. Most of the 

available models, such as empirical relations, granular media models, and inclusion models, are 

derived for reservoir conditions in which the rock and fluid parameters are known (Mavko et al., 

2009). If the fluid volumes change, the elastic properties change as well. Such effect is generally 

described by Gassmann’s equation. Similarly, if the effective pressure changes, the elastic properties 

change too. Several empirical equations have been proposed to describe the pressure effect, such as 

Eberhart- Phillips and MacBeth models (Eberhart-Phillips et al., 1989; MacBeth, 2004). The 

associated seismic response can be approximated using a convolutional model (Aki and Richards, 

1980). 

Landrø (2001) derived a new model to calculate the changes in velocities, densities, and 

reflection coefficients in different reservoir conditions as a function of changes in pressure and 

saturation. The model for velocity changes is a polynomial approximation and it is linear in the 

saturation changes and quadratic in the pressure changes; the model for density changes is linear in 

the saturation changes and assumes that such changes are not affected by changes in effective 

pressure or that these changes are negligible (a similar assumption was used and validated in Han, 

1986; Eberhart-Phillips, 1989); the model for the reflection coefficient changes combines the 



 

 

 
This article is protected by copyright. All rights reserved. 
 

previous relations with Aki-Richards linear approximation of Zoeppritz equation. If we indicate P-

wave velocity with  , S-wave velocity with  , and density with  , then the model can be formulated 

in terms of relative changes of elastic properties (i.e. the absolute change of the property divided by 

the initial value of the property), as follows: 
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where   ,   , and    represent P-wave velocity, S-wave velocity, and density, respectively, for the 

monitor survey;   ,   , and    represent the absolute change in P-wave velocity, S-wave velocity, 

and density, respectively, between the monitor survey and the baseline survey;    and    represent 

the changes in water saturation and effective pressure; and   ,   ,   ,   ,   ,   , and      are 

constant empirical coefficients which can be estimated from laboratory measurements. By assuming 
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 as in Landrø, 2001 (where the symbol   ̅ represents the average value of the property at the 

interface between upper and lower layer), the changes in the reflection coefficients can be then 

written as: 
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Meadows (2001) modified Landrø’s equation by using a quadratic approximation for changes in 

water saturation and effective pressure, as: 
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where   ,   ,   ,   ,   ,   ,   ,   ,   , and    are empirical constant values. The expression for 

the changes in the reflection coefficients can be derived similar to Equation 4. 

The assumption behind Landrø’s equations (Equations 1-3) and Meadows’ equations (Equations 

5-7) is that the regression coefficients are the same everywhere in the entire reservoir.  

Proposed formulation 

The main limitation of Landrø’s equations (Equations 1-3) and Meadows’ equations (Equations 

5-7) is that they do not account for the porosity of the rock, nor the initial saturation and pressure, 

but are only functions of the absolute change. The use of constant empirical values simplifies the 

calculations in the inversion approach but it introduces a limitation because if the equations are 

calibrated using, for example, high porosity rock samples, and the equation is applied to low porosity 

rock samples, it might lead to biased predictions of the elastic and seismic response variations. 

Similarly, the equations should also depend on the initial saturation and pressure values and not 

only on the absolute changes. Changes in effective pressure at low effective pressure conditions (for 

example, from 5 to 10 MPa) produce a more significant variation in elastic properties than changes 

at high effective pressure (for example, from 35 to 40 MPa): indeed, many of the physical models 

proposed for the pressure effect assume exponential trends. In mixtures of gas and water, a small 

amount of gas (such as 5% of gas) in a brine-saturated rock causes a large drop in P-wave velocity, 

whereas an increase in gas from 5% to 100% causes a small change in P-wave velocity: indeed, the 

bulk modulus of a mixture of gas and water is often computed using Reuss harmonic relation (Mavko 

et al., 2009). 

In this work, we propose a quadratic approximation for the relative changes of elastic properties 
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in which the approximation coefficients are functions of the reservoir porosity, initial water 

saturation, and initial effective pressure. To facilitate the use of the proposed model in time-lapse 

seismic inversion, we express the approximation in the logarithm of the ratio of the properties of the 

monitor seismic survey and the properties of the baseline seismic survey, in order to combine the 

proposed formulation with the approximation of the reflection coefficients proposed by Stolt and 

Weglein (1985) and adopted by Buland and El Ouair (2016). 

By combining Equations 5-7 with Aki-Richards approximation, we can derive the expression for 

the change in reflectivity equivalent to Equation 4 proposed in Landrø, 2001. The proposed 

formulation is based on Meadows relation but the coefficients vary spatially and are functions of the 

initial conditions: 
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where for simplicity we indicated the travel-time variable   but not the spatial variables (   ), and 

where   ,   , and    represent P-wave velocity, S-wave velocity, and density, respectively, for the 

monitor survey; and  ,  , and   represent P-wave velocity, S-wave velocity, and density, 

respectively, for the base survey. Instead of using constant values for the coefficients, the 

parameters    ,   ,   ,   ,   ,   ,   ,   ,   ,    are empirical functions of porosity  , initial water 

saturation  , and initial effective pressure  , computed by fitting quadratic regressions to 

experimental data. For example, the coefficients for Equation 8 are computed as follows: 
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for        . Similar expressions can be derived for the coefficients in Equations 9 and 10. The 

polynomial coefficients in Equations 11-14 must be calibrated from core data or well logs. 

To show the advantage of using the proposed formulation compared to the original formulation 

by Meadows (2001), we built a synthetic dataset using a rock physics model based on the stiff-sand 

model (Dvorkin et al., 2014), Gassmann’s equation, and an empirical relation for pressure. The 

comparison is done using the relative changes in P-wave velocity. The dataset includes rock samples 

with porosity ranging from 0.10 to 0.35 with different initial saturation and pressure and the P-wave 

velocity is computed in different saturation and pressure conditions. Figures 1 and 2 shows the 

comparison between the actual rock physics model and the approximated models.  

In Figure 1(a), we compute the P-wave velocity assuming that water saturation is 0 everywhere 

in the baseline survey and changes from a minimum of 0 in the baseline survey to a maximum of 1 in 

the monitor survey, due to the water injection (pressure is assumed to be constant). Therefore, the 

change in water saturation varies between 0 (no change in saturation between baseline and monitor 

survey) and 1 (the entire oil volume present in the baseline survey is fully replaced by water in the 

monitor survey). Intermediate values between 0 and 1 represents partial saturations during 

injection. Each sample (black lines) represents a different rock with porosity equal to 0.1, 0.15, 0.20, 

0.25, 0.30, and 0.35. The results show that the change in elastic properties due to the change in 

water saturation is different for rocks with different porosities. Because Meadows’ equation (green 

line) does not account for porosity, the approximation can be computed only for an average value 

(0.225 in this example); however, the proposed formulation (red lines) matches the synthetic 

dataset with good accuracy.  

Figure 1(b) describes the effect of the initial water saturation on the relative change of P-wave 
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velocity: in this example, porosity is a fixed value equal to 0.35 and different initial water saturation 

values, varying from 0 to 1, are assumed. The synthetic dataset was computed using the full rock 

physics model. Water saturation changes from the two end-point scenarios: 100% of oil and 100% of 

water. If water saturation in the baseline survey is 1, then water saturation can decrease down to 0; 

therefore, the change of water saturation varies between 0 (no fluid change, meaning that the 

reservoir is fully saturated by water at the time of the monitor survey) and -1 (oil has fully replaced 

water). If water saturation in the baseline survey is 0.1, then water saturation can increase up to 1, 

because of water injection and production of oil (for example, in hydrocarbon reservoirs); therefore, 

the change in water saturation varies between 0 (no change) to 0.9 (fully saturated by water, since 

the initial water saturation was 0.1). Each sample (black lines) has a different initial water saturation, 

therefore the range of the water saturation change is different for each sample: for example, if the 

initial water saturation is 0.1, the maximum change in water saturation is 0.9; if the initial water 

saturation is 0.7, the maximum change in water saturation is 0.3. The trends computed using the full 

rock physics model can be approximated by the proposed approximation (red lines) that accounts 

for the effect of the initial water saturation; whereas Meadows’ equation (green line) only provides 

an average value.  

Figure 2(a) shows the relation between relative changes in P-wave velocity and the effective 

pressure change, assuming that the initial effective pressure in the baseline survey is 5 MPa and it 

changes from a minimum of 0 to a maximum of 25 MPa. Each sample (black lines) represents a 

different rock with porosity equal to 0.1, 0.15, 0.20, 0.25, 0.30, and 0.35.  The approximated model 

accounting for the porosity effect (red lines) fits the full rock physics model (black lines). Figure 2(b) 

describes the effect of the initial effective pressure on the relative change of P-wave velocity: in this 

example, porosity is a fixed value equal to 0.35 and different initial effective pressure values, varying 

from 10 to 35 MPa, are assumed. For simplicity, in this example, we assume that effective pressure 

can only increase and the maximum values is 60 MPa (for an initial pressure of 35 MPa), but similar 
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results can be obtained for different initial and final pressure conditions. The results show that the 

initial effective pressure affects the relative change in P-wave velocity with respect to pressure 

change. Each sample (black lines) has a different initial effective pressure, from 10 to 35 MPa, and 

the change in pressure varies between 0 to 25 MPa; therefore, for an initial pressure of 10 MPa, the 

maximum value is 35 MPa, whereas for an initial pressure of 35 MPa, the maximum value is 60 MPa. 

Meadows’ equation (green line) only provides an average value, whereas the proposed 

approximation (red lines) that accounts for the effect of the initial pressure conditions correctly 

approximate the measurements simulated using the full rock physics model. 

Bayesian inversion 

The model proposed in Equations 8-14 can be integrated in many inversion schemes proposed in 

the geophysics literature. It could be used with non-linear least square methods (Dadashpour et al., 

2008), such as gradient and conjugate gradient algorithms, as well as probabilistic inversion 

methods, such as Bayesian inversion (Aster et al., 2005; Tarantola, 2005). In our approach, we 

propose a Bayesian inversion method.  

Similar to Buland and El Ouair (2006), we work with the differences of seismic amplitudes 

between the baseline seismic survey and the monitor seismic survey. We use partial stacked seismic 

data, and assume that data have been preliminary processed according to a standard seismic 

processing workflow and each angle stack have been corrected for time shift to align horizons 

between base and monitor surveys (using for example a warping method, as in Hale, 2009; Pazetti et 

al., 2016). The goal of the inversion is to estimate the changes in saturation and pressure from the 

seismic amplitudes difference of time-lapse seismic data (either between the monitor and baseline 

surveys or between two repeated monitor surveys). Similar to Buland and El Ouair (2006), the 

forward model can be expressed in the following form: 

                                                       (  )     ( (  ))                                               (15) 
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where    represents the seismic amplitude differences,    represents the changes in elastic 

parameters,    represents the changes in saturation and pressure,   is the error in the seismic 

measurements related to the noise in the data, f is the seismic forward model, and g is the rock 

physics model. In this work, we focus on pressure and saturation and we assume that all the other 

reservoir parameters, such as porosity, do not change during time. We also assume that systematic 

errors in the time-lapse seismic data have been corrected in the processing; therefore, the error 

term   is assumed to be distributed according to a Gaussian function with zero mean and known 

standard deviation, as in to Buland and El Ouair (2006). 

If we adopt a convolutional model for the forward seismic model for a given survey (for 

example, the baseline survey), the seismic data d of the survey can be computed as a linear function 

of the reflectivity using a convolution with a known wavelet as:  

                                                                                                                                     (16) 

where W is the matrix associated with the seismic wavelet and     is the weak contrast P-P 

reflectivity computed by Aki-Richards equation (Aki and Richards, 1980; Stolt and Weglein, 1985; 

Buland and Omre, 2003): 
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where   is the incident angle. 

The same model can be used to predict the seismic data    for any repeated monitor seismic 

survey, measured at a different time than the baseline survey. Because the model is linear, the same 

convolutional model can be also applied to seismic data difference, if data are preliminary corrected 

for time-shifts (as in Buland and EI Ouair, 2006; Grana and Murkerji, 2015). If we indicate the seismic 

amplitude differences (after time warping) with         and we indicate the change in 

reflectivity with     , then the time-lapse forward model can be written as  
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                                                                                                                                             (18) 

where the change of reflectivity      at a given travel-time sample  : 
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assuming 
 ̅ 

 ̅  
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, as in Landrø (2001).  

The rock physics model g in Equation 15 can be approximated using the proposed approximation 

in Equations 8-14. By combining Equations 8-14 with Aki-Richards approximation in Equation 19, we 

obtain the expression for the change in reflectivity as: 
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The resulting model is used as the forward model for the inverse problem in Equation 15. 

Because the inverse problem is non-linear in the model parameters    and   , the analytical 

solution proposed in Buland and El Ouair (2006) is not available and a numerical approach must be 

adopted. In our application, the inversion scheme used to solve the inverse problem is the Ensemble 

Smoother with Multiple Data Assimilation (Emerick and Reynolds, 2013), where an ensemble of 

several realizations of saturation and pressure changes is iteratively updated conditioned by the 

measured time-lapse seismic amplitudes. Each single Bayesian updating step can be expressed in the 

form: 

                   
     

 
      

 
(     

 
   ) 

  (  ̃     
 
)         (21) 

where        represent the ensemble models, the model parameters are    [        ]  , 
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the superscript p indicates the model at the previous iteration and the superscript u indicates the 

updated model,       represents the cross-covariance between the model parameters and the 

data,       represents the covariance of the data,    is the covariance of the error term,   ̃  is a 

stochastic perturbation of the measured data (measured seismic differences), and     is the 

predicted data (predicted amplitude differences). The Bayesian updating steps is iterated multiple 

times until convergence (Emerick and Reynolds, 2013). 

APPLICATIONS 

Illustrative examples  

To validate the proposed approximation of the forward model (Equations 8-14), we build a set of 

illustrative examples to show the limitations of the current approximations and the improvement 

provided by the proposed formulation. In these examples, we change the reservoir conditions 

(porosity and initial reservoir conditions) to study its effect on the elastic response. We show the 

different reservoir conditions using pseudo-logs, but we point out that the sequence of samples is 

not supposed to mimic realistic logs but idealized situations in order to analyse the relation between 

reservoir conditions and geophysical response. In Figure 3, we study the effect of porosity on the 

relative change of elastic properties assuming a constant water saturation change and constant 

effective pressure. In particular, we assume that porosity varies between 0.35 and 0.1, and that the 

reservoir at the time of the baseline survey (black line) is fully saturated with oil whereas at the time 

of the monitor survey (blue line) is fully saturated with water. The effective pressure is assumed to 

be 20 MPa in both surveys. In this example, we compare the actual data simulated using the full rock 

physics model (black lines), the approximated model using the proposed formulation (red lines), and 

Meadows’ model (green lines). Because Meadows’ equation does not account for porosity, the 

relative change in elastic properties is constant; however, the proposed formulation correctly 

approximates the full rock physics model for different porosity values.  
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In Figure 4, we study the effect of the initial water saturation assuming constant effective 

pressure. Indeed, the velocity relative change is not only function of the change in water saturation 

but also of the initial water saturation value. We assume that porosity is constant and equal to 0.3 

and that effective pressure is constant and equal to 20 MPa. The initial water saturation is equal to 0 

in the upper part (fully oil saturated) and 0.35 in the lower part (partially oil saturated). The water 

saturation change is constant and equal to 0.65; however due to the different initial water 

saturation, the water saturation for the monitor survey is equal to 0.65 in the upper part (0.35 of 

residual oil), and 1 in the lower part (fully water saturated). Because Meadows’ equation (green line) 

is only based on the absolute change of water saturation, the relative change in elastic properties is 

constant; however, the proposed formulation (red lines) approximates the full rock physics model 

(black lines) for both saturation conditions.  

Similar conclusions can be drawn by changing both porosity and initial saturation at the same 

time and for effective pressure changes in rock with different porosity and/or different initial 

effective pressure. Other rock physics models can be used (Avseth et al., 2005; Avseth and Skjei, 

2011; Duffaut et al., 2011; Avseth et al., 2013), such as the modified grain contact model (Saul et al., 

2013; Saul and Lumley, 2015) or the patchy cement model (Avseth and Skjei, 2011; Avseth et al., 

2016). 

Synthetic examples  

To validate the methodology, we created synthetic well logs to mimic potential pre- and post-

production scenario. In the first scenario (Figure 5), we created a pseudo-log of porosity using a 

geostatistical algorithm, assuming a Gaussian distribution with mean 0.2 and standard deviation 0.05 

and using an exponential variogram model to ensure the spatial continuity. The water saturation is 

assumed to be 0 in the entire interval (fully oil saturated) at the time of the baseline survey and 1 in 

the entire interval (fully water saturated) at the time of the monitor survey. Effective pressure is 

assumed to be constant and equal to 20 MPa. The elastic properties, i.e. P-wave velocity, S-wave 
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velocity and density, are computed using the stiff sand model, Gassmann’s equation, and the density 

equation; the simulated data are shown in Figure 5: the simulated data corresponding to the 

baseline survey are shown in black and the data for the monitor survey in blue. The corresponding 

relative changes in elastic properties and seismic data are shown in Figure 6. The proposed 

approximated model matches the predicted changes; however, Meadows’ equation predicts a 

constant value since the model does not depend on porosity and the water saturation is constant. 

The inverted results are shown in Figure 7: the inverted results derived from the proposed model 

can correctly predict the water saturation change, whereas the inverted results from Meadows’ 

equation mismatch the change in water saturation. Indeed, the errors in the prediction of water 

saturation correlates with the porosity log. 

The second scenario (Figure 8) represents a partially saturated reservoir with variable porosity 

and different effective pressure values ranging from 5 MPa to 20 MPa at different depths. The initial 

water saturation was generated using a geostatistical algorithm assuming a Gaussian distribution 

with mean 0.5 and standard deviation 0.2 and using an exponential variogram. We assume that 

water injection took place in the well and that at the time of the monitor survey the reservoir is fully 

saturated by water and the pressure is constant and equal to 35 MPa in the entire interval. The 

relative changes of elastic properties and the corresponding seismic response are shown in Figure 9. 

The results of the inversion are shown in Figure 10. The forward and inverse models obtained using 

the proposed formulation allow obtaining a better result compared to Meadows’ equation. 

Field example 

    We finally apply the method to a synthetic seismic dataset generated from a reservoir model 

of the Johansen field located in Norway (Eigestad et al., 2009). The Johansen formation is a potential 

CO2 storage site. The geo-cellular model including the reservoir and the sealing layers are made by 

10 layers. Figure 11 shows porosity, water saturation and effective pressure for the pre-injection 

static model. The model includes over-cap layers of shale at the top, and a mid-to-high porosity 
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sandstone layer. We created a synthetic dataset by simulating CO2 injection for 10 years using the 

Matlab Reservoir Simulation Toolbox for fluid flow simulation, and we computed a baseline survey 

(year 1) and a monitor survey (year 10). The synthetic dataset was computed using a convolutional 

model and a time-shift correction was applied to the monitor survey. The synthetic model is shown 

along a 2D section through the well location: the elastic properties computed using the full rock 

physics in depth domain are shown in Figure 12, the elastic properties in time domain (sampling rate 

of 4 ms) are shown in Figure 13, and the seismic data are shown in Figure 14. The       initial 

models of saturation and pressure in the ensemble were generated using geostatistical simulations 

(Doyen, 2007); the average of the simulations is non-informative and assumes almost constant 

changes in the reservoir. The inversion results data are obtained using the approximated model 

proposed in the Methodology section and the Bayesian inversion method based on the Ensemble 

Smoother algorithm. The inverted results are computed as the average of the     updated models 

of saturation and pressure in the ensemble. The results are shown in time domain in Figure 15 and 

satisfactorily match the data. 

DISCUSSION 

This work presents an improvement of the approximated model to compute elastic and seismic 

changes (in terms of relative change of P-wave velocity, S-wave velocity, density, and reflectivity) 

due to changes in saturation and pressure. For reservoirs with unknown initial conditions, an 

average value of porosity can be assumed; in this scenario, the proposed approximation is 

equivalent to Meadow’s equation; but for spatially variable reservoir conditions (i.e. different values 

in different locations of the reservoir) the proposed model is more accurate than linear and 

quadratic approximations proposed in the literature. The presented model can be used in time-lapse 

seismic inversion studies where the solution (i.e. the saturation-pressure changes) is computed 

directly from the changes in seismic amplitudes, as in Landrø (2001); however, the improved 

accuracy of the proposed model allows reducing the propagation of the errors due to the 
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approximation of the forward physical operator to the solution of the inverse problem. In our work, 

we presented a quadratic approximation consistent with Meadows equation, but theoretically a 

larger order polynomial could be used. The estimation of the coefficients of the quadratic expansion 

can be obtained by solving a non-linear least square problem to fit the values of well log data and 

core samples. Generally, the estimation of the coefficients for the water saturation change is easier 

than for pressure, since the model can be fitted using well logs before and after Gassmann’s fluid 

substitution, whereas the pressure effect requires a set of laboratory measurements with velocities 

measured at different effective pressure conditions. The so-obtained model can be used for time-

lapse seismic inversion in any inverse theory algorithm. In our work, we chose a probabilistic 

approach similar to Buland and El Ouair (2006). However, the proposed formulation is quadratic; 

therefore, the analytical solution of the Bayesian inverse problem is not available. The main 

limitation of the proposed inversion is that it requires a pre-processing of the data to correct the 

monitor survey(s) for time-shift. Time-shift information is very valuable for 4D seismic studies and its 

integration in the inversion workflow would improve the model predictions and reduce the 

prediction uncertainty; however, it is beyond the scope of this work. Furthermore, in this work, we 

assumed that porosity is variable in space, but constant in time; additional work to include the 

compaction effect is needed and could be developed using the formulations based on the dilation 

factor proposed by Røste et al. (2006), Carcione et al. (2007), and Landrø (2015). 

The proposed formulation and its utilization in Bayesian inversion allow improving the reservoir 

characterization as well as the ability to use time-lapse seismic data to monitor reservoir changes of 

dynamic properties, including pressure and saturation. The implementation of the proposed method 

is beneficial not only for reservoir monitoring studies using time-lapse seismic but also for history 

matching problems (Oliver et al., 2008). The integration of seismic data in history matching studies is 

challenging due to the large amount of data as well as the low resolution and low signal-to-noise 

ratio of the data; however, the application of the proposed methodology allows identifying the 
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location of the fluid front as well as reservoir compartments with high and low effective pressure. 

Generally, seismic history matching problems include production data and elastic properties 

inverted from time-lapse seismic data (Huang et al., 1997; Oliver and Chen, 2001; Gosselin et al., 

2003; Dong and Oliver, 2005); however, the results of the proposed method allow directly 

integrating pressure and saturation in the seismic history matching workflow, which would allow 

solving the seismic history matching problem by adopting a parameterization (saturation and 

pressure) consistent with the fluid flow simulation. 

CONCLUSIONS 

We presented a methodology for the estimation and inversion of elastic and seismic property 

changes due to the changes in water saturation and effective pressure. The proposed model 

approximated the physics that describes how the elastic and seismic response of a sequence of 

porous rocks is affected by variations of water content and pressure conditions. The proposed 

formulation depends on the porosity of the rock, the initial water saturation, and the initial effective 

pressure, and provides an improvement compared to traditional approximations applied in time-

lapse studies, such as Landrø and Meadows’ equations. The so-obtained formulation allows 

computing the change in reflectivity between two seismic surveys directly from the changes in water 

saturation and pressure and can be integrated in time-lapse seismic inversion studies through any 

inverse theory algorithm. In our work, we propose a Bayesian non-linear inversion algorithm based 

on the Ensemble Smoother Multi-Data Assimilation to estimate the saturation-pressure changes 

given the difference in seismic amplitudes between two seismic surveys, after the preliminary 

warping process for the correction of the time-shift. The validation through illustrative examples, 

synthetic well logs, and a 3D reservoir model for CO2 sequestration shows the improvement of the 

proposed forward model compared to traditional approximations and the inversion problem results. 
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LIST OF FIGURES 

 

Figure 1: Rock physics relations between relative change in P-wave velocity and water 

saturation change and comparison of full rock physics model (black lines), proposed 

approximation (red lines) and Meadows’ equation (green lines). a) Water saturation is 0 in 

the baseline survey and increases up to 1 in the monitor survey; each line represents 

different porosity values varying, from top to bottom, from 0.1 to 0.35 respectively, b) 

Porosity is constant and equal to 0.35; each line represents different initial water saturation 

values varying from 0 to 1. 
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Figure 2: Rock physics relations between relative change in P-wave velocity and effective pressure 

change, and numerical comparison of full rock physics model (black lines), proposed model (red 

lines) and Meadows approximation (green lines). a) Effective pressure is 5 MPa in baseline survey 

and increases up to 30MPa in the monitor survey; each line represents different porosity values 

varying, from top to bottom, from 0.1 to 0.35 respectively; b) Porosity is constant and equal to 0.35; 

each line represents different initial effective pressure varying from 10MPa to 35MPa. 

 

Figure 3: Illustrative example to study the porosity effect on the relative change of elastic properties 

assuming a constant water saturation change and constant effective pressure: a) porosity; b) initial 

and final saturation; c) relative change of P-wave velocity; d) relative change of S-wave velocity; and 

e) relative change of density (full rock physics model in black, proposed model in red, and 

Meadows’s equation in green). 
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Figure 4: Illustrative example to study the effect of initial water saturation on the relative 

change of elastic properties assuming constant effective pressure. Legend and colours as in 

Figure 3. 

 

Figure 5: Example with synthetic well logs, from left to right: a) porosity, b) water saturation, 

c) effective pressure, d) P-wave velocity, e) S-wave velocity, f) density. Data for the baseline 

survey are in black, data for the monitor survey are in blue. 
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Figure 6: Numerical comparison of the forward models: full rock physics model (black lines), 

proposed model (red lines) and Meadows’ equation (green lines). From left to right: a) 

relative change in P-wave velocity, b) relative change in S-wave velocity, c) relative change in 

density, d) seismic amplitude differences for the near angle (10 deg.), e) seismic amplitude 

differences for the mid angle (20 deg.), f) seismic amplitude differences for the far angle (30 

deg.). 

 

Figure 7: Comparison of the inverted results obtained with the proposed formulation (a) and 

Meadows’ equation (b). The actual changes are shown in black, the inverted results using 

the proposed formulation in red, and the inverted results using Meadows’ formulation in 

green.   
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Figure 8: Example with synthetic well logs. Legend and colours as in Figure 5.  

 

Figure 9: Numerical comparison of the forward models: full rock physics model. Legend and 

colours as in Figure 6. 
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Figure 10: Comparison of the inverted results obtained with the proposed formulation (a) 

and Meadows’ equation (b). Legend and colours as in Figure 7. 

 

Figure 11: Reservoir properties of the Johansen model before CO2 injection (depth of the 

baseline survey): a) porosity; b) water saturation; c) effective pressure. 
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Figure 12: 2D section of elastic properties computed using the full rock physics model in 

depth domain: a) P-wave velocity (baseline); b) P-wave velocity (monitor); c) absolute P-

wave velocity change between baseline and monitor; d) S-wave velocity (baseline); e) S-

wave velocity (monitor); f) absolute S-wave velocity change; g) density (baseline); h) density 

(monitor); and i) absolute density change. 
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Figure 13: 2D section of elastic properties computed using the full rock physics model in time 

domain. Legend and colours as in Figure 12. 
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Figure 14: Synthetic time-lapse seismic data: a) near angle (baseline); b) near angle 

(monitor); c) seismic amplitude differences for the near angle after warping; d) mid angle 

(baseline); e) mid angle (monitor); f) seismic amplitude differences for the mid angle; g) far 

angle (baseline); h) far angle (monitor); i) seismic amplitude differences for the far angle. 
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Figure 15: Comparison between the actual saturation-pressure changes and the estimated 

results. Top plots show water saturation and bottom plots show effective pressure: a) actual 

water saturation change; b) prior water saturation change; c) predicted water saturation 

change; d) actual effective pressure change; e) prior effective pressure change; and f) 

predicted effective pressure change. 
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