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ABSTRACT

The physics that describes the seismic response of an inter-
val of saturated porous rocks with known petrophysical prop-
erties is relatively well understood and includes rock physics,
petrophysics, and wave propagation models. The main goal
of seismic reservoir characterization is to predict the rock
and fluid properties given a set of seismic measurements by
combining geophysical models and mathematical methods.
This modeling challenge is generally formulated as an inverse
problem. The most common geophysical inverse problem is
the seismic (or elastic) inversion, i.e., the estimation of elastic
properties, such as seismic velocities or impedances, from
seismic amplitudes and traveltimes. The estimation of petro-
physical properties, such as porosity, lithology, and fluid sat-
urations, also can be formulated as an inverse problem and is

generally referred to as rock-physics (or petrophysical) inver-
sion. Several deterministic and probabilistic methods can be
applied to solve seismic inversion problems. Deterministic al-
gorithms predict a single solution, which is a “best” estimate or
the most likely value of the model variables of interest. In
probabilistic algorithms, on the other hand, the solution is
the probability distribution of the model variables of interest,
which can be expressed as a conditional probability density
function or a set of model realizations conditioned on the data.
The probabilistic approach provides a quantification of the un-
certainty of the solution in addition to the most likely model.
Our goal is to define the terminology, present an overview of
probabilistic seismic and rock-physics inversion methods for
the estimation of petrophysical properties, demonstrate the
fundamental concepts with illustrative examples, and discuss
the recent research developments.

INTRODUCTION

Seismic reservoir characterization (or seismic reservoir modeling
[SeReM]) refers to a subdiscipline of exploration geophysics that
aims to improve the reservoir description in terms of rock and fluid
properties based on geophysics models (i.e., rock physics, petro-
physics, geomechanics, and seismology) using seismic data as well
as core measurements and well logs if available. One of the primary
tasks of seismic reservoir characterization is the prediction of res-
ervoir properties, i.e., elastic and petrophysical properties of satu-
rated porous rocks, from the available geophysical data (Doyen,
2007; Avseth et al., 2010; Bosch et al., 2010; Simm and Bacon,

2014; Azevedo and Soares, 2017; Grana et al., 2021). This task
is generally referred to as seismic and/or rock-physics inversion,
depending on the parameterization of the reservoir model.
In this context, the term seismic inversion traditionally refers to the

acoustic or elastic inversion of seismic data for the prediction of seis-
mic properties, such as velocities or impedances, and density (Fig-
ure 1a). The term rock-physics (or petrophysical) inversion refers to
the prediction of rock and fluid properties from a set of seismic mea-
surements or attributes (Figure 1b and 1c). Examples of rock and
fluid properties include not only porosity, lithology (i.e., mineral vol-
umes or facies), and fluids saturation but also could include other
properties such as fracture density and orientation. The available data
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generally include seismic data but, in many practical applications, the
input data are the set of seismic properties obtained from seismic in-
version, which means that the data are not direct measurements but
are the results of a modeling process. In other words, the rock-physics
inversion for reservoir characterization can be performed sequentially
in two steps (i.e., seismic and rock-physics inversions, Figure 1b) or a
single step (i.e., a joint seismic and rock-physics inversion, Figure 1c).
The physics relations used in the rock-physics inversion are generally
referred to as the rock-physics model (Mavko et al., 2020). Unlike
seismic inversion, the details of the rock-physics model formulation
vary depending on the geologic and sedimentary environment,
although the basic underlying fundamentals of effective medium the-
ories are applicable to all depositional environments.
In this review, we focus on inversion methods for seismic reservoir

characterization in which the state-of-the-art research primarily fo-
cuses on the probabilistic inversion of seismic data for petrophysical
properties, as opposed to seismic imaging in which ongoing research
focuses on full-waveform inversion methods for elastic variables
(Virieux and Operto, 2009). Rock-physics (or petrophysical) inver-
sion has made significant progress recently (Doyen, 2007; Bosch
et al., 2010; Grana et al., 2021); however, recent advances, in par-
ticular probabilistic methods, are still not completely integrated with
industry best practices and common geomodeling workflows. In
many practical applications, simple deterministic inversion methods
and simplified rock-physics models often are used to estimate rock
and fluid properties. A typical example is the prediction of porosity
from P-wave velocity assuming a linear relation between the two
properties and performing a simple linear inversion. However,
rock-physics models are generally not linear and might require more
advanced constitutive equations and inverse methods. The solution of
the inverse problem is nonunique due to the nonbijectivity of the
geophysical equations, the heterogeneity in spatial distributions

and correlations of rock properties, the noise, and the band-limited
nature of seismic data. Therefore, a suitable inversion method should
estimate the uncertainty in the prediction as well as the most likely
model. The goal of probabilistic inversion is not to build a single
model of the reservoir and add some quantitative information related
to uncertainty, but to account for the inherent uncertainty in the
solution of the inversion problem. The relative uncertainties of the
input data and parameters can change the most likely model and
hence ignoring those risks introduces bias. Probabilistic inversions
can therefore reduce bias in the solution and provide a model of un-
certainty for decision-making purposes.
Probabilistic approaches to inverse problems provide a natural

framework for seismic and rock-physics inversion. In a probabilistic
approach, the solution of the inverse problem can be expressed as a
probability density function (PDF) of the model properties or a set
of model realizations that capture the uncertainty in the model.
Probabilistic inversion methods providing the estimation of the pos-
terior probability distribution of the model parameters can be com-
bined with geostatistical simulation algorithms to sample from the
posterior distribution and provide multiple model realizations with
spatial correlation. Most probabilistic methods for inverse problems
use a Bayesian approach (Tarantola, 2005), in which the prior dis-
tribution of the model parameters (assumed from a priori knowl-
edge) is combined with the likelihood function that links the
data to the model parameters, to estimate the posterior distribution.
One of the main advantages of the Bayesian framework is the ability
to integrate the prior knowledge of the unknown random variable
with data conditioning from multiple sources. However, not all sto-
chastic methodologies are formulated in a Bayesian framework.
This is the case of stochastic optimization methods that do not
explicitly require a prior model but stochastically perturb an initial
realization until convergence.

Several classifications of the available petro-
physical inversion methods can be proposed,
such as Bayesian versus non-Bayesian, stochas-
tic sampling versus optimization, continuous
versus discrete, or single-loop versus multistep
inversion. Here, we propose to classify the
available methods into four main categories:
(1) Bayesian analytical inversion, (2) Monte
Carlo methods, (3) stochastic optimization, and
(4) probabilistic deep learning. This is not a strict
classification as some methods can be classified
in multiple categories. For example, some sam-
pling methodologies can be considered Monte
Carlo methods as well as stochastic optimization
algorithms. Similarly, probabilistic deep learning
algorithms can be considered as stochastic opti-
mization. Some methods might be hybrid and
combine multiple approaches. For instance,
some Bayesian analytical inversions might re-
quire Monte Carlo sampling for the evaluation
of the full posterior distribution. Markov chain
Monte Carlo (MCMC) methods can be consid-
ered part of the stochastic optimization group;
however, MCMC is a Bayesian method, whereas
stochastic optimization methods are not neces-
sarily Bayesian and do not always require a prior
distribution.

Figure 1. Inversion problems in seismic reservoir characterization and corresponding
terminology.
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The first two categories are based on the Bayesian approach in
which we aim to estimate the posterior probability distribution of
the model variables. In the Bayesian analytical inversion category,
we include only the Bayesian inversion methods that provide an ana-
lytical solution of the posterior PDF conditioned on the measured data
(e.g., the distribution of reservoir rock and fluid properties condi-
tioned on seismic data). The analytical solution is generally available
only for linear problems that meet statistical assumptions for the prob-
ability distributions of the prior model and data errors. The application
of these methods to seismic reservoir characterization requires the lin-
earization of the seismic and rock-physics models. Monte Carlo meth-
ods, such as Monte Carlo acceptance-rejection sampling and MCMC,
are iterative algorithms in which a large set of models is generated to
approximate the posterior distribution (Diggle and Gratton, 1984;
Geyer, 1992; Chib and Greenberg, 1995; Brooks et al., 2011; Gelman
et al., 2013). In Monte Carlo acceptance-rejection sampling, multiple
realizations of the model variables (e.g., reservoir models of rock and
fluid properties) are generated from a prior distribution and accepted
or rejected according to the likelihood of the predictions compared
with the real data (e.g., the predicted seismic response); the accepted
models are used to approximate the posterior distribution. A similar
approach to Monte Carlo acceptance-rejection sampling is repre-
sented by approximate Bayesian computation algorithms, in which
a set of model parameters is generated from a prior distribution,
the likelihood function is approximated by simulations, and the mis-
match between the predicted and real data is evaluated to accept or
reject the proposed model (Csillery et al., 2010). In MCMC methods,
such as Metropolis-Hastings or Gibbs sampling algorithms, a se-
quence of models (a chain) is proposed and a model is accepted
or rejected according to the posterior probability of the current model
given the data compared with the posterior probability of the previous
model in the chain until the chain converges to the posterior distri-
bution. In stochastic optimization algorithms, a set of models is iter-
atively generated and stochastically perturbed until the mismatch
between predicted and measured data is lower than a given threshold;
the model with the lowest misfit value is the optimal solution of the
inverse problem. The selection of the optimal model requires the
assumption of a measure of the mismatch (i.e., the norm of the error)
between predicted and measured seismic data. In general, analytical
algorithms are faster and computationally more efficient than numeri-
cal methods, but they require the linearization of the forward model,
as well as restrictive and sometimes geologically unrealistic assump-
tions about the probability distributions of the model parameters.
Acceptance-rejection sampling and stochastic optimization algo-
rithms are more computationally demanding because of the large
number of realizations required to obtain a good approximation of
the posterior function. Unlike Monte Carlo methods, stochastic opti-
mization and probabilistic deep learning algorithms are not neces-
sarily framed in a Bayesian setting, and they might not require a
prior distribution of the model variables but an initial realization or
set of realizations. Stochastic optimization and Monte Carlo sampling
algorithms have represented the computational foundations of nonlin-
ear geophysical inversion for several decades. In the context of convex
functions optimization, stochastic optimization algorithms are
generally more efficient computationally than sampling algorithms,
whereas, for nonconvex functions resulting from mixture modeling,
sampling methods can be as efficient as optimization algorithms (Ma
et al., 2019). In recent years, several deep learning algorithms devel-
oped in computer science have been recently applied to geophysical

inverse problems. These algorithms often are based on frequentist
approaches to perform statistical inference; however, Bayesian ap-
proaches such as Bayesian neural networks have gained popularity
in geoscience applications of deep learning (Wang and Yeung,
2016; Wilson and Izmailov, 2020). Reservoir model realizations for
sampling, optimization, and deep learning are generally created using
geostatistical techniques, such as stochastic sequential simulation
(Deutsch and Journel, 1997) based on variograms (or two-point geo-
statistics), multipoint statistics simulation (Mariethoz and Caers,
2014), process-mimicking simulations, or object-based simulations
(Linde et al., 2015).
In the following sections, we first present a literature review of

the main probabilistic inversion algorithms presented in the litera-
ture and then show some examples of inversion methodologies.

LITERATURE REVIEW

Seismic reservoir characterization is based on several physical
models including seismic wave propagation (e.g., Aki and Richards,
1980; Sheriff and Geldart, 1995) and rock physics (Avseth et al.,
2010; Mavko et al., 2020). The goal is to predict the model variables
that fit the data according to the physical model. This task is generally
challenging due to the multiple sources of uncertainty that affect the
data, such as noise and limited bandwidth, heterogeneity in spatial
distributions of rock properties, and the approximations in the physi-
cal relations, which makes the solution nonunique. The inverse
theory is a branch of mathematics that aims to compute the model
variables of interest from the measured data, assuming that the physi-
cal relation is known or partially known (Tarantola and Valette, 1982;
Tarantola, 2005). Inverse methods for geophysical applications in-
clude deterministic and probabilistic approaches (Tarantola, 2005;
Aster et al., 2011; Sen and Stoffa, 2013). Seismic reservoir charac-
terization generally focuses on a specific depth interval, as opposed to
seismic imaging in which the interval of interest starts at the surface.
Linearized approximations of seismic wave propagation often are as-
sumed, such as the linearized amplitude-variation-with-offset (AVO)
approaches (e.g., Aki and Richards, 1980; Russell, 1988). As our
focus is on the petrophysical rock and fluid properties, such as poros-
ity, lithofacies, mineral, and fluid fractions, seismic models are com-
bined with rock-physics equations (Mavko et al., 2020) to map the
properties of interest into their seismic response. Doyen (2007)
provides an excellent overview of modeling methods for seismic res-
ervoir characterization. Bosch et al. (2010) provide a summary of
methodologies that are now well established in the geomodeling
workflow. Avseth et al. (2010) and Simm and Bacon (2014) focus
on the geologic interpretation and practical application of SeReM
techniques. Azevedo and Soares (2017) focus on the integration
of geostatistical methods in SeReM. The fundamentals, as well as
the state-of-the-art of seismic reservoir characterization, are described
in Grana et al. (2021).
Probabilistic inversion methods were first proposed for acoustic

and elastic inversion several decades ago (Duijndam, 1988a,
1988b; Sen and Stoffa, 1991; Mallick, 1995). At the same time, many
works on the integration of geostatistical methods and seismic mod-
eling have been proposed with the goal of generating multiple res-
ervoir models conditioned on seismic amplitudes as well as honoring
available well data and the spatial two-point correlation as well as
spatial multipoint statistical structure (Doyen, 1988; Doyen and
Guidish, 1992; Bortoli et al., 1993; Haas and Dubrule, 1994; Doyen
and den Boer, 1996; González et al., 2008; Jeong et al., 2017). The
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parallel developments in statistical rock physics and petrophysics
modeling allowed the incorporation of rock-physics relations in
the probabilistic seismic inversion workflows (Mukerji et al.,
1998, 2001a, 2001b; Sams et al., 1999; Torres-Verdín et al.,
1999). Subsequent publications integrating rock-physics modeling
and seismic inversion for the prediction of petrophysical properties
led to the introduction of the term “petrophysical inversion” in which
a rock-physics model (or petroelastic model) is first calibrated from
the available well data to define a physical relation between petro-
physical properties and elastic attributes at the well location and then
the petrophysical properties of interest are estimated from seismic
data in the reservoir model (Bosch, 1999; Mazzotti and Zamboni,
2003; Bornard et al., 2005; Coléou et al., 2005; Bachrach, 2006;
Spikes et al., 2008; Bosch et al., 2009). In the same context, the stat-
istical rock-physics approach (Mukerji et al., 2001a, 2001b; Eidsvik
et al., 2004a) was developed to account for the uncertainty in the
rock-physics models. Statistical rock physics allows for Bayesian
classification of inverted seismic attributes obtained from determin-
istic or stochastic seismic inversion (Avseth et al., 2010). Probabilistic
frameworks for rock-physics inversion were proposed for the quan-
tification of the uncertainty associated with the spatial distribution of
petrophysical properties in seismic reservoir studies (Malinverno and
Briggs, 2004; Connolly and Kemper, 2007; Sams and Saussus, 2007,
2008).
Bayesian inversion methods (Tarantola and Valette, 1982; Curtis

and Lomax, 2001; Scales and Tenorio, 2001; Ulrych et al., 2001;
Buland and Omre, 2003; Gunning and Glinsky, 2004; Tarantola,
2005) represent the most common tool for probabilistic inversion.
In the context of seismic inversion for reservoir characterization,
Bayesian linearized AVO inversion (Buland and Omre, 2003) is
one of the most popular tools for its analytical formulation and ef-
ficient implementation. The forward seismic operator is parameter-
ized in terms of the logarithm of the elastic properties (i.e., P- and S-
wave velocities and density). This approach assumes a linearization
of the seismic forward model (i.e., a convolutional model of a wave-
let and a linearized AVO approximation), a Gaussian distribution of
the prior model variables (i.e., the logarithm of elastic properties),
and data errors. According to these assumptions, the posterior dis-
tribution of the logarithm of elastic properties also is Gaussian and
is analytically derived (Buland and Omre, 2003). The Bayesian lin-
earized approach was later extended to rock-physics inversion and
with more complex prior models (Larsen et al., 2006; Buland et al.,
2008; Grana and Della Rossa, 2010; Rimstad and Omre, 2010;
Ulvmoen et al., 2010; Ulvmoen and Omre, 2010; Rimstad et al.,
2012; Grana et al., 2017; Fjeldstad and Grana, 2018; Madsen
and Hansen, 2018). A subset of Bayesian methods, namely varia-
tional Bayesian methods, includes a group of techniques for
approximating intractable integrals in Bayesian inference, and they
have been applied to seismic and petrophysical inversion by Nawaz
and Curtis (2019) and Nawaz et al. (2020). Bayesian methods also
have been recently applied to full-waveform inversion problems
(Zhu et al., 2016; Singh et al., 2018; Izzatullah et al., 2019; Aragao
and Sava, 2020; Huang et al., 2020; Zhang and Curtis, 2020, 2021a;
Zhao and Sen, 2021).
Because the rock-physics relation is generally nonlinear, Monte

Carlo methods have been adopted to compute the posterior distri-
bution of the model properties conditioned on seismic data (Mose-
gaard and Tarantola, 1995; de Groot et al., 1996; Mosegaard, 1998;
Sambridge and Mosegaard, 2002; Bosch et al., 2007; Gunning and

Glinsky, 2007). Monte Carlo approaches are iterative numerical
methods and include Monte Carlo acceptance-rejection sampling
and MCMC algorithms. Monte Carlo acceptance-rejection sam-
pling estimates the posterior distribution by sampling a large set
of models from a prior distribution and accepting or rejecting them
according to the mismatch of the model predictions and the mea-
sured data; however, this approach generally requires an extremely
large number of model realizations. These models are often com-
puted according to a trace-by-trace approach, or pseudowell ap-
proach (Ayeni et al., 2008). Connolly and Hughes (2016)
propose an efficient and highly parallelizable Monte Carlo approach
that integrates spatial models of facies and rock-physics models in a
trace-by-trace inversion workflow. Monte Carlo acceptance-rejec-
tion can be considered as a member of the approximate Bayesian
computation class of methods (Sunnåker et al., 2013). Unlike
Monte Carlo acceptance-rejection sampling in which the realiza-
tions are sampled independently, in MCMC methods, the realiza-
tions are drawn from a proposal distribution and the proposed
models are accepted or rejected according to an acceptance prob-
ability that depends on the posterior probability of the proposed
realization and the posterior probability of the realizations obtained
in the previous iteration. Several implementations of MCMC meth-
ods have been applied in geophysical inverse problems, including
the Metropolis, Metropolis-Hastings, Gibbs sampling, and Hamil-
tonian Monte Carlo algorithms (Sen and Stoffa, 2013; Grana et al.,
2021). In the context of seismic and rock-physics inversion, Hansen
et al. (2012) use the Gibbs sampler and the Metropolis algorithm
can be used to sample solutions to nonlinear inverse problems with
nontrivial priors; Zunino et al. (2015) directly infer the rock facies
and porosity of a target reservoir zone using MCMC methods; Jul-
lum and Kolbjørnsen (2016) present a Metropolis-Hastings algo-
rithm for the prediction of rock properties; de Figueiredo et al.
(2018) introduce a Gibbs sampling algorithm for the joint prediction
of facies and rock and fluid properties; and de Figueiredo et al.
(2019a, 2019b) propose an MCMCmethod based on the Metropolis
algorithm for the prediction of facies and petrophysical properties
using Gaussian mixture and nonparametric distributions. MCMC
methods also have been applied to seismic tomography and full-
waveform seismic inversion (Fichtner et al., 2019; Sen et al., 2019;
Gebraad et al., 2020; Fu and Innanen, 2021; Khoshkholgh et al.,
2021; Biswas and Sen, 2022).
Other stochastic optimization algorithms have been proposed, such

as simulated annealing, genetic algorithms, gradual deformation,
neighborhood algorithm, and probability perturbation method (Sam-
bridge and Drijkoningen, 1992; Curtis and Snieder, 1997; Sam-
bridge, 1999; Bornard et al., 2005; Coléou et al., 2005; González
et al., 2008; Azevedo et al., 2015, 2018; Dupuy et al., 2016a,
2016b; Jeong et al., 2017). Stochastic optimization algorithms gen-
erally provide multiple realizations of the reservoir models and avoid
local minima of the objective functions. The focus of these algo-
rithms is on the optimization component of the inversion rather than
the sampling and, as a consequence, the uncertainty in the predictions
is generally underestimated. Ensemble-based methods represent a
family of stochastic algorithms that simultaneously update an ensem-
ble of geostatistical realizations such that the model predictions
match the measured data. This approach is efficient for nonlinear in-
verse problems for which the computation of the conditional means
and conditional covariance matrices of the model given the data
cannot be analytically solved. The ensemble of posterior realizations
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is then used to predict the most likely model and its uncertainty.
Ensemble-based methods include the ensemble Kalman filter, the en-
semble smoother, their iterative versions, the ensemble randomized
maximum likelihood filter, and the ensemble smoother with multiple
data assimilation (ES-MDA) (Evensen, 2009; Emerick and Reynolds,
2013; Chen and Oliver, 2017). Ensemble-based methods are more
commonly applied in reservoir engineering, but recent applications
to seismic and rock-physics inverse problems showed promising re-
sults (Liu and Grana, 2018; Canchumuni et al., 2019). Stochastic op-
timization algorithms also have been applied to seismic waveform
inversion (van Leeuwen et al., 2011; Li et al., 2012; Thurin et al.,
2019; Gineste et al., 2020).
Deep learning represents a subset of methods of machine learning

in which the solution of the inverse problem is inferred from a large
training data set according to supervised or unsupervised ap-
proaches. Probabilistic deep learning specifically refers to machine
learning algorithms that account for model and data uncertainty by
combining probabilistic models and deep neural networks (Bishop,
1995; Goodfellow et al., 2016). These algorithms are based on deep
neural networks that use probabilistic layers which can represent the
uncertainty or probabilistic models that incorporate deep neural net-
work components which capture complex relationships between
variables and measurements (Chang, 2021). Some algorithms might
include a Monte Carlo approach in which weights and biases of the
neural network are sampled from a prior distribution and optimized
to estimate the posterior distribution of the model variables. Early
applications of neural networks for geophysical inverse problems
can be found in Roth and Tarantola (1994) for seismic velocity es-
timation and Saggaf et al. (2003) for porosity prediction from seis-
mic data. Shahraeeni and Curtis (2011) and Shahraeeni et al. (2012)
present a probabilistic approach to petrophysical inversion using a
neural network. Mosser et al. (2020) use generative adversarial net-
works (GANs) in a Bayesian framework to draw realizations of pos-
terior samples of P-wave velocity and facies using MCMCmethods.
Liu et al. (2020) adopt convolutional neural networks (CNN) and
GAN to classify facies from seismic data. Feng et al. (2021) present
a Bayesian CNN. Talarico et al. (2021) combine recurrent neural
networks with high-order Markov chain models for seismic facies
classification. Zhang and Curtis (2021b) develop a Bayesian geo-
physical inversion using invertible neural networks. Siahkoohi et al.
(2021) present a Bayesian deep learning approach for seismic im-
aging. Pradhan and Mukerji (2022) propose a Bayesian learning
approach based on the neural network for seismic inversion. Wang
et al. (2022) present a Gaussian mixture model deep neural network
for porosity inversion. Recently, deep learning generative models
such as GANs have been used to generate multiple realizations from
the prior geologic model and to condition the realizations to seismic
attributes (Laloy et al., 2018; Chan and Elsheikh, 2019; Zhang et al.,
2019; Mosser et al., 2020; Song et al., 2021a, 2021b).
Several other methods have been presented including different

parameterizations of the model space, for example, in terms of elas-
tic attributes in seismic inversions, such as elastic impedance and
extended elastic impedance (Connolly, 1999; Whitcombe et al.,
2002) or Poisson and velocity ratios (Avseth et al., 2010) as well
as categorical properties in rock-physics inversion, such as facies or
rock types (Kemper and Gunning, 2014; Gunning and Sams, 2018;
Dhara et al., 2020; Nawaz et al., 2020). Additional classifications
based on different parameterizations, data, and physical models are
discussed in the “Discussion” section. Probabilistic inversion meth-

ods are often combined with geostatistical methods to generate
multiple realizations from the prior or the posterior. Geostatistical
realizations of the model properties in the reservoir can be generated
using sequential indicator simulations, multiple point geostatistics,
stochastic sequential simulation and cosimulation, or probability
field simulations (Deutsch and Journel, 1997; Caers, 2005; Hansen
et al., 2006; Mariethoz and Caers, 2014; Pyrcz and Deutsch, 2014;
Azevedo and Soares, 2017). Geostatistical realizations allow ac-
counting for the spatial correlation in the model of reservoir proper-
ties. Spatial statistics techniques including Markov models and
hidden Markov models (Rolke, 1991; Elfeki and Dekking, 2001;
Eidsvik et al., 2004b; Lindberg and Grana, 2015) as well as Markov
random fields (Rimstad and Omre, 2010; Rimstad et al., 2012; Gun-
ning and Sams, 2018; Fjeldstad et al., 2021) also have been pro-
posed, but the application in three dimensions is still challenging
due to the large number of parameters in the models, such as
the transition probabilities of the transition matrices in the different
directions. Independently from the optimization algorithm adopted
for the inversion, the resolution of the geologic features below the
seismic resolution comes from the spatial model (as described by
variograms or training images) introduced by the sampling algo-
rithm used to generate multiple reservoir models and not from
the seismic data (Francis, 2006a, 2006b; Grant et al., 2020).
Reservoir characterization studies also might include additional

geophysical data such as electromagnetic and gravity data (Gloaguen
et al., 2004; Chen et al., 2007; Tompkins et al., 2011; Buland and
Kolbjørnsen, 2012; Gao et al., 2012). Stochastic methods also can
be adopted to update the static reservoir model to improve the fore-
cast of the fluid-flow simulation model. This process is known as
seismic history matching. Two common algorithms for history
matching of reservoir models are the ensemble Kalman filter and
the ensemble smoother (Evensen, 2009; Emerick and Reynolds,
2013), which have been applied to the simultaneous assimilation
of production and geophysical data (Chen andOliver 2017; Luo et al.,
2018; Lorentzen et al., 2019). These methods also have been com-
bined with deep learning to improve the efficiency of the data assimi-
lation (Laloy et al., 2018; Tahmasebi et al., 2018; Liu et al., 2019).

METHODS

The forward operators used in inverse problems for seismic res-
ervoir characterization are known geophysical models and generally
include seismic wave propagation and rock-physics models. Given
a sequence of saturated porous rocks with known porosity, lithol-
ogy, and fluid saturation, we can predict the elastic response in
terms of P- and S-wave velocities and density by applying a
rock-physics model, and we can predict the seismic response in
terms of amplitude and traveltime by applying a seismic wave
propagation model. Because the rock and fluid properties of interest
are generally unknown, seismic reservoir characterization aims to
predict these properties from seismic measurements. This modeling
step requires the solution of a geophysical inverse problem.
Geophysical data inversion is a modeling problem in which we

predict the model variables m from measured data d according to
the governing physical operator f such that

d ¼ fðmÞ þ e; (1)

where e is the data error independent of the model variables. For
example, we can predict elastic or petrophysical properties from
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seismic data according to a rock-physics model and seismic wave
propagation theory.
When the physical operator f is linear, the solution of the inverse

problem can be analytically computed with deterministic or prob-
abilistic methods, whereas when the physical operator f is nonlin-
ear, the solution is obtained through iterative methods (Aster et al.,
2011). In geophysical inverse problems, the solution is generally
nonunique because the geophysical data are uncertain (due to
the noise, limited resolution, and assumptions associated with data
processing) and the problem is often underdetermined as the num-
ber of model variables is typically larger than the number of mea-
surements. For this reason, probabilistic methods are generally
adopted to quantify the uncertainty of the model.
The most common probabilistic approach is the Bayesian

method, in which the posterior distribution of the model variables
PðmjdÞ is computed according to Bayes’ rule,

PðmjdÞ ¼ PðdjmÞPðmÞ
PðdÞ ; (2)

as the product of the prior distribution of the model variables PðmÞ,
the likelihood of the data PðdjmÞ, and normalized by the marginal
distribution of the data PðdÞ such that ∫PðmjdÞ ¼ 1. The normali-
zation constant PðdÞ is computationally infeasible to compute in
many practical applications and numerical approximations often
are adopted. For a nonlinear physical operator f, iterative stochastic
methods, such as Monte Carlo, stochastic optimization, and deep
learning algorithms, are commonly applied as the analytical solu-
tion is generally not available. In the next subsections, we present
the fundamental theory for each group of petrophysical inversion
methods and an illustrative example of application to seismic res-
ervoir characterization problems.

Bayesian analytical inversion

For a linear physical operator f, if the prior distribution of the
model variables PðmÞ is Gaussian PðmÞ ¼ N ðm;μm;Σm) with
prior mean μm and prior covariance matrix Σm, and if the distribution
of the data error PðeÞ is Gaussian PðeÞ ¼ N ðe; 0;Σe) with 0 mean
and covariance matrixΣe, then the posterior distribution of the model
variables PðmjdÞ also is Gaussian PðmjdÞ ¼ N ðm;μmjd;Σmjd):

PðmjdÞ¼ const× exp

�
−
1

2
ðFm−dÞTΣ−1

e ðFm−dÞ
�

× exp

�
−
1

2
ðm−μmÞTΣ−1

m ðm−μmÞ
�

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞnm jΣmjdj

q × exp

�
−
1

2
ðm−μmjdÞTΣ−1

mjdðm−μmjdÞ
�
;

(3)

with posterior mean μmjd given by

μmjd ¼ μm þ ΣmFTðFΣmFT þ ΣeÞ−1ðd − FμmÞ; (4)

and the posterior covariance matrix Σmjd given by

Σmjd ¼ Σm − ΣmFTðFΣmFT þ ΣeÞ−1FΣm; (5)

where F is the matrix associated with the linear operator f (Tarantola,
2005) and nm is the dimension of the model variable m. The ana-
lytical solution is available only for a limited number of prior distri-
butions that are conjugate with respect to the Gaussian likelihood
function PðdjmÞ ¼ N ðd; fðmÞ;Σe), such as Gaussian (Tarantola,
2005), log-normal (Buland and Omre, 2003), skew-Gaussian (Rim-
stad andOmre, 2014), andGaussianmixture distribution (Grana et al.,
2017). Analytical formulations in geophysical inverse problems for
seismic reservoir characterization are based on the linearization of
forward seismic and rock-physics operators (Buland and Omre,
2003; Grana et al., 2017). The linearized seismic operator can bewrit-
ten as a convolution of the wavelet and a linearized approximation of
the Zoeppritz equations for the reflectivity coefficients (Buland and
Omre, 2003). The linearization of the rock-physics model can be ob-
tained as the first-order truncation of Taylor’s series.
Buland and Omre (2003) present a Bayesian linearized AVO

inversion method for the prediction of elastic properties from par-
tially stacked seismic data. The inversion is based on the lineari-
zation of the seismic forward operator using an AVO model and
assumes Gaussian distributions for the prior model parameters
and for the data errors. In Buland and Omre (2003), the unknown
model variables are the logarithm of P- and S-wave velocities and
density, m ¼ ½lnðVPÞ; lnðVSÞ; lnðρÞ�, as this parameterization al-
lows for the linearization of the forward operator. Indeed, the for-
ward model is expressed as a convolution of the source wavelet
and the angle-dependent reflectivity coefficients are calculated us-
ing Aki-Richards approximation of Zoeppritz equations. This op-
erator is linear with respect to the logarithms of P- and S-wave
velocities and density as convolution and the reflectivity functions
are linear functions. An example of the application of Bayesian
linearized AVO inversion to synthetic seismograms computed
from a set of sonic and density logs is shown in Figure 2. The
data set consists of near-, mid-, and far-angle-stacked seismo-
grams, and we assume that the wavelet is known. The prior model
is a set of log-Gaussian distributions with a depth-varying mean
obtained by filtering the sonic and density logs using the Backus
average (Backus, 1962). The vertical correlation model is an ex-
ponential function with a correlation length of 5 ms. Here, the
Bayesian linearized AVO inversion is applied to estimate the pos-
terior distribution of P- and S-wave velocities and density. Figure 2
shows the full posterior distributions, the pointwise maximum a
posteriori of the PDFs, and the 0.95-confidence interval. In the
Bayesian analytical inversion, the posterior uncertainty does not
depend on the value of the data, but only depends on the prior
variance and the noise variance. Therefore, the uncertainty of the
elastic properties is a function of the signal-to-noise ratio of the
data (Buland and Omre, 2003). As shown in Buland and Omre
(2003), in which the authors investigate signal-to-noise ratios be-
tween 1 and 105, with a realistic signal-to-noise ratio, P-imped-
ance is estimated with the highest precision, whereas density is
highly uncertain, and the inversion does not provide additional in-
formation other than the background trend. Ball et al. (2015) ana-
lyze how the uncertainty in the low-frequency background model
affects the inversion results. If additional geologic information is
available, the prior can be more informative and include facies-
dependent mean values (Kemper and Gunning, 2014).
Grana and Della Rossa (2010) extend the Bayesian linearized ap-

proach to rock-physics inversion. In their approach, the unknown
model variables are the petrophysical properties such as porosity,
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the volume of clay, and water saturation, r ¼ ½ϕ; vc; sw�. Owing to
the multimodal nature of the distribution of petrophysical proper-
ties, the prior distribution of the model variables is assumed to be a
Gaussian mixture model in which each component of the mixture is
associated with specific facies (or rock type), and the weights of the
mixture represent the prior proportions of the facies. The inversion
is performed in three steps: (1) Bayesian linearized AVO inversion
(Buland and Omre, 2003) is applied to compute the conditional
probability of elastic properties PðmjdÞ, (2) Gaussian mixture
rock-physics inversion is applied to compute the conditional prob-
ability of petrophysical properties PðrjmÞ; and (3) the Chapman
Kolmogorov equation is applied to compute the posterior probabil-
ity of petrophysical properties PðrjdÞ ¼ ∫PðrjmÞPðmjdÞdm and
propagate the uncertainty from the seismic to the petrophysical do-
main. An example of the application of Gaussian mixture rock-
physics inversion to the synthetic seismograms in Figure 2 is shown
in Figures 3 and 4. The prior model is a Gaussian mixture distri-
bution with two components corresponding to sand and shale
(Figure 3a and 3b). The rock-physics relation is based on Dvorkin’s
stiff-sand model (Gal et al., 1998) (Figure 3c and 3d). Here, the
Gaussian mixture rock-physics inversion is applied to estimate
the posterior distribution of porosity, clay volume, and water satu-
ration. Figure 4 shows the full posterior distributions and the point-
wise maximum a posteriori of the PDFs.

Grana et al. (2017) and Fjeldstad and Grana (2018) extend the
joint seismic and rock-physics inversion approach based on Gaus-
sian mixture models to incorporate a spatial correlation model for
the facies. In this approach, the prior distribution includes a Gaus-
sian mixture model for the petrophysical properties and a Markov
chain model for the facies. The posterior distribution also is a Gaus-
sian mixture model with analytical expressions for the posterior
means and covariance matrices of the Gaussian components of
the petrophysical properties in each facies. However, the posterior
weights must be assessed numerically using a numerical approach
due to the spatial correlation model of the facies.
Bayesian methods also can be adopted when the forward model is

nonlinear and the prior distribution is not Gaussian. For example, we
can generate a training data set usingMonte Carlo simulations by sam-
pling a non-Gaussian prior distribution of the petrophysical properties
and applying a rock-physics model to compute the elastic predictions.
This approach is commonly referred to as statistical rock physics
(Mukerji et al., 2001a, 2001b; Eidsvik et al., 2004a; Avseth et al.,
2010; Bosch et al., 2010; Grana and Della Rossa, 2010). The joint
distribution Pðm; dÞ ¼ PðdjmÞPðmÞ is estimated from the training
data set and the posterior distribution is numerically evaluated. Doyen
(2007) and Grana et al. (2021) propose this approach assuming non-
parametric PDFs for the joint distribution and adopt the kernel density
estimation algorithm to approximate the nonparametric joint PDF.

Figure 2. Bayesian linearized AVO inversion: (a–c) input seismic data and (d–f) predictions of P- and S-wave velocities and density. The black
lines represent the measured seismograms and well logs, the solid red lines represent the posterior means, the dashed red lines represent the
posterior 0.95 confidence interval, and the background color represents the posterior distribution.
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Monte Carlo methods

Monte Carlo methods refer to a family of mathematical methods
to approximate a PDF of random variables by repeated random
sampling. In the context of inverse problems, Monte Carlo methods

are used to draw samples from a prior distribution and accept or
reject the proposed model according to the likelihood of the model
predictions obtained by applying the forward operator to the
sampled model. The posterior distribution of the model variables
(equation 2) is then estimated from the set of accepted model real-

izations.
The simplest implementation of the Monte

Carlo approach is the acceptance-rejection sam-
pling, as it only requires a sampling algorithm,
for example, geostatistical simulation methods,
and the forward operator, such as the seismic
and rock-physics models. In the context of seis-
mic reservoir characterization, the Monte Carlo
acceptance-rejection algorithm can be imple-
mented by generating pseudologs (i.e., vertical
profiles) or 2D/3D realizations of model varia-
bles using geostatistical methods such as sequen-
tial Gaussian simulation (Doyen, 2007; Grana
et al., 2021) according to the prior distribution
of the model variables and the prior spatial cor-
relation model, computing the synthetic seismic
response, and accepting or rejecting the proposed
model based on a predefined acceptance cri-
terion, such as the crosscorrelation or the L2
norm between the simulated and observed seis-
mic data.
González et al. (2008) propose a sequential ap-

proach in which model realizations are generated
using geostatistical simulation conditioned to
multiple-point statistics, in which each trace is
sequentially visited, and the model realization
is accepted or rejected according to the data like-
lihood. If accepted, the model realization is re-

tained; otherwise, it is rejected and simulated again at the next
iteration. This idea originated from Bortoli et al. (1993) who origi-
nally use variogram-based (two-point) conditional geostatistical
simulations instead of multiple-point statistics. Connolly and
Hughes (2016) propose a Monte Carlo acceptance-rejection algo-
rithm for joint seismic and rock-physics inversion to predict facies
and petrophysical properties. The model realizations are sampled
from the prior distribution and a vertical correlation model, inde-
pendently at each iteration, as opposed to conditional sampling
(i.e., MCMC methods) in which the solution is iteratively obtained
by perturbing the model obtained in the previous iteration. This
method also can be considered part of the approximate Bayesian
computation category, as it approximates the likelihood function
by simulations and compares the predictions with the measured
data. This inversion is based on matching the synthetic response
of the pseudowells to seismic data. As sampling is independent
at each iteration, no information from the previous iteration is used
to condition the simulation in the next iteration; hence, Monte Carlo
acceptance-rejection algorithms avoid bias but are computationally
demanding. Connolly and Hughes (2016) propose an efficient im-
plementation by restricting the size and spatial dimensionality of the
samples and sampling in the facies domain. The addition of a local-
ized optimization step applied to each accepted realization after a
relatively small number of iterations significantly improves the
match quality while still retaining the advantage that the samples
are independent (Connolly, 2021).

Figure 3. Prior and likelihood models of Bayesian Gaussian mixture rock physics in-
version: (a and b) prior distribution of petrophysical properties and (c and d) rock-phys-
ics model. The black dots represent the well-log data.

Figure 4. Bayesian Gaussian mixture inversion of seismic data for
petrophysical properties: (a) porosity, (b) clay volume, and (c) water
saturation. The black lines represent the measured data, the red lines
represent the posterior mean, and the background color represents
the posterior distribution.

M206 Grana et al.

D
ow

nl
oa

de
d 

08
/2

4/
22

 to
 8

7.
8.

26
.2

37
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

S
E

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/p

ag
e/

po
lic

ie
s/

te
rm

s
D

O
I:1

0.
11

90
/g

eo
20

21
-0

77
6.

1



Monte Carlo methods might be computationally demanding
especially when the prior distribution is not informative and the al-
gorithm samples regions with low likelihood values. To avoid this
limitation, a Markov chain is adopted. A Markov chain is a random
process in which the probability of moving from the previous state
to the current state is defined by a transition probability that depends
only on the immediate previous state (and not on the previous ones).
Based on this concept, MCMC methods design a random walk in
the model space using a Markov chain to draw samples. The chain
of samples asymptotically converges to a stationary distribution that
approximates the posterior distribution of the Bayesian inverse
problem. There are different MCMC algorithms, including Gibbs
sampling, Metropolis-Hastings, and Hamiltonian Monte Carlo
(Sen and Stoffa, 2013; Grana et al., 2021).
In general, in MCMC methods, a sample m is drawn from a pro-

posal distribution gðmÞ conditioned on the solution at the previous
iteration and is accepted or rejected according to a likelihood cri-
terion. If accepted, the proposed sample is used to condition the
proposal in the next iteration; if rejected, the previous sample is
retained. One of the most popular MCMC methods is the Metropo-
lis-Hastings algorithm (Hastings, 1970). In the Metropolis-Hastings
algorithm, we first draw the initial sample of the chain m0 from the
prior distribution PðmÞ; then, at each iteration, a sample m 0 is
drawn from the proposal distribution gðmjmiÞ conditioned on
the sample mi, and it is accepted with acceptance probability:

pa ¼min

�
Pðm 0jdÞ
PðmijdÞ

×
gðmijm 0Þ
gðm 0jmiÞ

;1

�

¼
�
Pðdjm 0ÞPðm 0Þ
PðdjmiÞPðmiÞ

×
gðmijm 0Þ
gðm 0jmiÞ

;1

�
; (6)

where the normalizing constant PðdÞ cancels out in the fraction in
equation 6, making the calculation of the accepting probability
computationally feasible. If the probability ratio in equation 6 is
greater than or equal to one, the sample m 0 is always accepted; oth-
erwise, we generate a random number u ∼Uð½0; 1�Þ uniformly dis-
tributed. If u ≤ pa, the sample m 0 is accepted; otherwise, it is
rejected. When the sample is accepted, it becomes the new state
of the chain: miþ1 ¼ m 0; otherwise, the previous state is retained
miþ1 ¼ mi. The Metropolis algorithm (Metropolis et al., 1953) is a
special case of the Metropolis-Hastings method, in which the pro-
posal distribution gðmjmiÞ is symmetric, i.e., gðmjmiÞ ¼ gðmijmÞ.
Thus, in theMetropolis algorithm, the probability ratio in equation 6
simplifies to the ratio of the posterior probabilities. Hence, if
Pðm 0jdÞ ≥ PðmijdÞ, the proposed sample m 0 is always accepted;
otherwise, if Pðm 0jdÞ < PðmijdÞ; it is accepted with probability
pa ¼ Pðm 0jdÞ∕PðmijdÞ: If (1) the prior distribution is Gaussian
N ðm;μm;ΣmÞ with prior mean μm and prior covariance matrix
Σm generally obtained by combining a stationary covariance matrix
and a spatial correlation matrix, (2) the likelihood function is Gaus-
sianN ðd; fðmÞ;ΣeÞ with mean fðmÞ and covariance matrix Σε, and
(3) the proposal distribution is symmetric, then the acceptance prob-
ability pa is

pa ¼ min

�
exp

�
−
1

2
ðF lðm 0Þ −F lðmiÞÞ

�

× exp

�
−
1

2
ðFpðm 0Þ −FpðmiÞÞ

�
; 1

�
; (7)

with

F lðmÞ ¼ ðfðmÞ − dÞTΣ−1
e ðfðmÞ − dÞ; (8)

FpðmÞ ¼ ðm − μmÞTΣ−1
m ðm − μmÞ; (9)

where the subscripts l and p indicate the likelihood and the prior
model, respectively. The Gibbs sampling algorithm (Geman and
Geman, 1984) is another special case of the Metropolis-Hasting
algorithm in which the proposed sample is drawn from the full
conditional distribution of one variable conditioned on the other
variables, for which the acceptance probability is always equal to
one and the proposed sample is always accepted (Gelman et al.,
2013). The Gibbs algorithm consists of computing the desired dis-
tribution by performing multiple samplings of each variable given
all of the other variables. The main advantage of Gibbs sampling is
the reduction of the dimensionality of the problem, by producing a
sequence of low-dimension simulations that converge to the target
distribution. It is generally applied when the joint distribution is
difficult to sample from directly, but the conditional distributions
of each variable conditioned on the other variables can be effi-
ciently computed, by drawing a sample from the distributions
of each variable in turn, conditional on the current values of
the other variables.
The posterior distribution of the model variables is then estimated

from the samples of the chain, after discarding the initial samples
such that the chain loses dependence on the initial sample. The set
of discarded iterations is generally referred to as the “burn-in”
period. It is common to apply the so-called “thinning” of the Mar-
kov chain, i.e., subsampling the chain by taking every kth observa-
tion instead of all of them, to obtain samples that are nearly
independent and reduce storage costs. The posterior distribution
of rock and fluid properties in seismic reservoir characterization
is highly dimensional nonconvex. For this reason, to improve the
robustness of the inference of the posterior distribution, it is
common to run multiple chains for each data trace to ensure con-
vergence. An example of the Metropolis algorithm sampling is
shown in Figure 5. The rock-physics model is the same as in Fig-
ure 3c and 3d. The proposal distribution is assumed to be Gaussian
with locally variable means that depend on the previous model and
assigned covariance matrix. The spatial correlation model is an ex-
ponential function with a correlation length of 5 ms. We apply the
MCMC inversion to estimate the posterior distribution of porosity,
clay volume, and water saturation. Figure 5 shows 2000 posterior
realizations, the estimated posterior distributions, and the posterior
mean of the PDFs.
De Figueiredo et al. (2019a, 2019b) propose an MCMC

Metropolis-based algorithm to predict facies and petrophysical
variables using Gaussian mixture and nonparametric distributions.
Each component of the mixture is identified with a facies configu-
ration. The sampling algorithm is performed in two steps: in the
jump step, a new realization of facies and petrophysical properties
is proposed, whereas, in the local step, the previous facies reali-
zation is retained and a new realization of petrophysical properties
is sampled. This algorithm allows jointly sampling facies and
petrophysical realization from high-dimensional multimodal dis-
tribution.
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Stochastic optimization

Stochastic optimization methods are mathematical algorithms for
the prediction of the optimal solution (or set of solutions) with re-
spect to a predefined criterion. Geophysical inverse problems can be
formulated in a stochastic optimization framework by defining an
objective function JðmÞ that represents the misfit between the mea-
sured data and the geophysical operator predictions ~d:

JðmÞ ¼ kd − ~dk þ kΓmk ¼ kd − fðmÞk þ kΓmk; (10)

and minimizing it to find the optimal solution m̂:

m̂ ¼ argminmðkd − fðmÞk þ kΓmkÞ; (11)

where Γ is a Tikhonov regularization parameter (Aster et al., 2011),
often assumed to be the product of a scalar and the identity matrix
Γ ¼ αI. The Gaussian prior term PðmÞ ¼ N ðm;μm;Σm) in Baye-
sian inversion (equation 3) is equivalent to the regularization term
Γm with respect to the L2 norm (equation 10), with prior covari-
ance Σm ¼ ΓTΓ.
In stochastic optimization, the solution m is iteratively stochasti-

cally perturbed to minimize the value of the objective function. Sev-
eral stochastic optimization algorithms based on sequential sampling
have been proposed for geophysical inverse problems, including
gradual deformation, probability perturbation method, ensemble
smoother, simulated annealing, genetic algorithms, and deep learning
algorithms (Grana et al., 2021). These algorithms differ for the def-
inition of stochastic perturbation and the optimization process. For
illustration purposes, we describe in detail the ensemble smoother
algorithm.

Ensemble-based methods represent a family of stochastic optimi-
zation algorithms in which an ensemble of model realizations is
generated, for example, using geostatistical methods, and then up-
dated according to a Bayesian updating step. The conditional dis-
tribution of the model variables is approximated by estimating the
sample mean and covariance matrix from the ensemble. The ES-
MDA (Emerick and Reynolds, 2013) is an iterative method. First,
we define the number of ensemble models ne and the inflation fac-
tors fαig for i ¼ 1; : : : ; na, with

Pna
i¼1ð1∕αiÞ ¼ 1, where na is the

number of iterations. Then, we generate an ensemble of prior real-
izations fmi¼1

j g of the model variables, for j ¼ 1; : : : ; ne. At each
iteration i ¼ 1; : : : na, we apply a perturbation to the measured data
dipj

¼ dþ ffiffiffiffi
αi

p Σ1∕2
e zipj

, where Σe is the covariance matrix of the
measurement errors and the random vector zipj

is Gaussian with
0 mean and identity covariance matrix for j ¼ 1; : : : ; ne. We then
apply the forward operator f to the ensemble of models fmi

jg to
compute the predicted data fdijg for j ¼ 1; : : : ; ne. The ensemble
models mi

j are then updated according to a Bayesian step to obtain
the ensemble models miþ1

j :

miþ1
j ¼ mi

j þ Σi
m;dðΣi

d;d þ αiΣeÞ−1ðdipj
− dijÞ; (12)

for j ¼ 1; : : : ; ne, where Σi
m;d is the cross-covariance matrix of

models mi and predicted data di and Σi
d;d is the covariance matrix

of the data di, and they are approximated with the empirical covari-
ance matrices estimated from the ensemble. The ensemble models
are iteratively updated until the fixed number of data assimilations
na is reached. Localization methods often are necessary to avoid the
collapse of an ensemble, i.e., only one ensemble member carries
significant weight and the posterior variance converges to zero, es-
pecially with large data sets such as seismic surveys (Chen and
Oliver, 2017). An example of the inversion using the ES-MDA al-
gorithm is shown in Figure 6, assuming the rock-physics model in
Figure 3c and 3d. The initial ensemble includes 1000 realizations of
porosity, clay volume, and water saturation, generated according to
a prior Gaussian distribution and an exponential function with a
correlation length of 5 ms. We apply the ES-MDA inversion with
four data assimilation steps with constant inflation factors and ob-
tain the posterior realizations of clay volume and water saturation.
Figure 6 shows the 1000 posterior realizations, the estimated pos-
terior distributions, and the posterior mean of the realizations. The
uncertainty is generally slightly underestimated compared with the
MCMC case in Figure 5.
The gradual deformation method (Hu, 2000) is a stochastic sam-

pling approach in which two independent Gaussian model realiza-
tions are gradually perturbed, according to a deformation
parameter θ ∈ ½0; π∕2�: We can then sample multiple realizations
by sampling values of θ. The gradual deformation method can be
used as a stochastic optimization approach by iteratively sampling
multiple realizations and choosing the realization that maximizes
the likelihood of the data predictions or minimizes the misfit between
the measured and predicted data (Le Ravalec, 2005). Such an ap-
proach transforms a multidimensional optimization into a sequence
of 1D optimizations. The probability perturbation method (Caers and
Hoffman, 2006) is a stochastic optimization algorithm similar to the
gradual deformation method. However, in the probability perturba-
tion method, the perturbation is applied to the probability distribution
used to generate the model realizations rather than the realization it-
self. In this approach, at each iteration, a new probability distribution

Figure 5. MCMC inversion of seismic data for petrophysical prop-
erties: (a) porosity, (b) clay volume, and (c) water saturation. The
black lines represent the measured data, the red lines represent the
posterior mean, the gray lines represent the posterior realizations,
and the background color represents the posterior distribution.
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is defined as a convex combination of the conditional probability
obtained in the previous iteration and the prior probability. Several
other stochastic optimization methods have been applied to geophysi-
cal inverse problems, including simulated annealing, particle swarm
optimization, and genetic algorithms (Sen and Stoffa, 2013) as well
as deep learning algorithms.

Probabilistic deep learning

Deep learning relies on the concept of an artificial neural network
(Bishop, 1995; Goodfellow et al., 2016). With the recent advances in
the field of artificial intelligence and high-performance computing,
data-driven methods developed in computer science and based on
deep learning have been applied to seismic inverse problems for
the classification and prediction of reservoir properties (Bhattacharya,
2021; Bhattacharya and Di, 2022). In the context of inverse problems,
the goal of deep learning is to find an approximation g ≅ f−1 of the
inverse function of the forward operator f (equation 1). In a generic
neural network with L hidden layers, the model variable of interestm
is represented as a function of the hidden states z as

m ¼ hðwLzL þ bLÞ; (13)

with

zl ¼ gðwl−1zl−1 þ bl−1Þ; (14)

for l ¼ 1; : : : ; L, where fwg1; : : : ;L and fbg1; : : : ;L represent the
weights and biases of the network, respectively, whereas g and h re-
present the activation functions. Probabilistic models also can be in-
tegrated with the neural network to obtain a probabilistic distribution
in the output. Weights and biases can be considered stochastic var-
iables to make the neural network a deep learning algorithm.
A comprehensive automated solution to the seismic reservoir char-

acterization problem is still missing; however, deep learning and
probabilistic deep learning algorithms have been applied to several
steps of the modeling workflow, including seismic facies classifica-
tion, reservoir characterization, fault detection, and salt segmentation.
Recent advances in deep learning including CNNs, recurrent neural
networks (RNNs), and GANs have been applied to seismic and pet-
rophysical inversion (Biswas et al., 2019; Das et al., 2019; Mosser
et al., 2020; Sun et al., 2021). Probabilistic approaches to the neural
network have been presented in Roth and Tarantola (1994), Saggaf
et al. (2003), Shahraeeni and Curtis (2011), and Shahraeeni et al.
(2012). These algorithms differ in the architecture of the neural net-
work. For illustration purposes, we show an example of the applica-
tion of an RNN to a facies classification problem.
Unlike traditional neural networks, such as multiple layer percep-

tron and convolutional neural networks, recurrent neural networks
allow information cycles through a feedback loop and thus account
for the input at the current time step and the information learned from
previous time steps. The main advantage of recurrent neural networks
is that they can capture temporal dependencies in the input data, mak-
ing them suitable for seismic reservoir characterization problems
in which the seismic data are collected as time signals. In general,
recurrent neural networks include hidden layers serving as state
memory to store the information learned from previous time steps;
however, in practical applications, they might fail when training with
long sequences of data. For this reason, recurrent neural networks
using gated units, such as long short-termmemory (Goodfellow et al.,
2016), have been developed to make them suitable for data sequen-

ces. Long short-term memory is based on the gate mechanism, in
which the value of the cell state at each time step is determined
by the current value and the value at the previous time step, according
to the update and forget gate, and the activation output is then regu-
lated by the output gate. We adopt a simple network with a long short-
term memory layer, a time-distributed layer, and a fully connected
layer with SoftMax as the activation function to map logits into prob-
abilities and output the probability distributions. The data set includes
a reference facies model including sand, shaly sand and shale, and a
seismogram corresponding to a zero-offset trace (Figure 7). We first
generate a training data set of s ¼ 10; 000 realizations of facies using
aMonte Carlo method assuming first-order stationaryMarkov chains.
In each facies, we sample porosity, calculate P-impedance using a
linearized rock-physics model, and compute the seismogram using
a convolutional model. We then apply the recurrent neural network
method to the measured seismogram. The recurrent neural network
includes one long short-term memory layer of 50 units, and the opti-
mizer is the RMSprop with a learning rate of 0.001 and a moving
average parameter of 0.9. The data set is randomly split into two sub-
sets with 90% of the samples in the training set and 10% of the sam-
ples in the validation set. The optimal model is obtained around epoch
30. The classification results are shown in Figure 7. The predicted
facies match the reference profile well, even though some thin layers
are not correctly predicted. The facies probabilities capture the uncer-
tainty in the interval with higher entropy.
Many applications of deep learning in seismic reservoir characteri-

zation focus on categorical problems, such as facies or rock-type clas-
sification (Liu et al., 2019; Feng et al., 2021; Talarico et al., 2021) as
in the example previously; however, deep neural networks also have
been applied to inverse problems for the prediction of continuous

Figure 6. Ensemble smoother inversion of seismic data for petro-
physical properties: (a) porosity, (b) clay volume, and (c) water sat-
uration. The black lines represent the measured data, the red lines
represent the posterior mean, the gray lines represent the posterior
realizations, and the background color represents the posterior dis-
tribution.
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properties, such as petroelastic variables (Roth and Tarantola, 1994;
Saggaf et al., 2003; Shahraeeni and Curtis, 2011; Shahraeeni et al.,
2012; Mosser et al., 2020; Zhang and Curtis, 2021a, 2021b).
Probabilistic neural networks also can be formulated in a Bayesian
setting. Given a data set d with n measurements with independent
Gaussian distributed errors with variances σ2i for i ¼ 1; : : : ; n,
and given a neural network with parameters θ including weights
w and biases b, then the likelihood can be written as

PðdjθÞ ¼
Yn
i¼1

NðfðmðθÞÞi; di; σ2i Þ; (15)

wherem is obtained as in equations 13 and 14. Then, the posterior of
the neural parameters can be computed using Bayes’ rule,

PðθjdÞ ¼ PðdjθÞPðθÞ
PðdÞ ; (16)

and the posterior realizations of the model variable of interest can be
obtained by randomly drawing the neural parameters, hence by cre-
ating a proposal distribution in a sampling-based approach.

DISCUSSION

The proposed classification of methods defined in the “Introduc-
tion” section aims at defining the main feature of the mathematical
approach used to solve the inverse problem, i.e., analytical PDFs,
sampling algorithms, optimization techniques, or deep learning

methods. All these algorithms can be applied to a large variety
of geophysical inverse problems, including seismic AVO and
rock-physics (or petrophysical) inversion and facies classification,
as well as seismic full-waveform and electromagnetic inversion.
However, probabilistic methods for seismic reservoir characteriza-
tion can be classified according to the model parameterization, the
input data, or the physical models assumed for the forward operator
of the inversion.
Another popular classification of seismic reservoir characterization

algorithms for the prediction of rock and fluid properties of the res-
ervoir discriminates between single-loop inversion and multistep (or
sequential) inversion. In a single-loop inversion, the input data are the
seismic amplitudes and traveltimes, and the inversion generally in-
cludes a seismic model, a rock-physics model, and in some cases
a facies classification (Bosch et al., 2007, 2009; González et al.,
2008; Connolly and Hughes, 2016; Jeong et al., 2017; Aleardi et al.,
2018; Gunning and Sams, 2018; Bachrach and Gofer, 2020; Heidari
et al., 2022). As the combined seismic and rock-physics model is gen-
erally nonlinear, the analytical solution is generally not available and
numerical algorithms are generally adopted. For large applications,
algorithms based on linearized models or 1D approximations often
are adopted to reduce the computational time. In a multistep inversion,
seismic data are first inverted to estimate the corresponding elastic
properties; then, elastic properties are inverted to predict the petro-
physical properties and/or classified in facies (Larsen et al., 2006; Bu-
land et al., 2008; Grana and Della Rossa, 2010; Ulvmoen et al., 2010;
Shahraeeni et al., 2012; Aleardi et al., 2018; de Figueiredo et al.,
2018). In the multistep approach, different algorithms can be used
for the different inversion steps, and probabilistic inversion methods

also can be applied to seismic inversion results ob-
tained using deterministic methods. The multistep
approach often relies on a linearized AVO inver-
sion (e.g., Buland and Omre, 2003) and allows
treating the rock-physics inversion as a pointwise
problem. However, one of the challenges in the
multistep approach is the propagation of the un-
certainty through the different steps. Grana and
Della Rossa (2010) propose a statistical approach
based on the Chapman Kolmogorov equation to
propagate the uncertainty from the seismic inver-
sion step (i.e., Bayesian linearized AVO inversion)
to the petrophysical domain (i.e., Bayesian petro-
physical inversion). In single-loop and multistep
methods, multiple parameterizations can be
adopted for the petrophysical variables, including
porosity, mineral volumes, and fluid saturations,
as well as for the elastic formulation, including
velocity, density, impedances, or other seismic
attributes. Advanced rock-physics and seismic
models accounting for the anisotropy, stress, and
fracture properties also can be included in the in-
version (Bachrach and Gofer, 2020).
Bayesian analytical inversion, MCMC, and en-

semble-based methods are implemented in the
open-source SeReM package, available in MAT-
LAB (Grana et al., 2021) and in Python (Grana
and de Figueiredo, 2021), whereas inversion algo-
rithms with the complex prior information can be
found in SIPPI (Hansen et al., 2013). The Tensor-

Figure 7. Seismic facies classification using recurrent neural network: (a) reference
facies classification, (b) predicted facies, (c) predicted facies probability, and (d) seismic
response (predicted data in black and reference data in red).
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Flow Probability library is designed to combine probabilistic models
with deep learning (Dürr et al., 2020) and has been applied to seismic
inverse problems for reservoir characterization (Liu and Grana, 2019).
The quality of the inversion can be assessed according to multiple
metrics. For continuous properties, the accuracy of the inversion
can be quantified using the root-mean-square (rms) error and the lin-
ear correlation coefficient. The rms error represents the square root of
the quadratic mean of the differences between predicted and measured
values (i.e., the residuals). Similarly, the linear correlation coefficient
is computed between predicted and measured values. In particular, for
time signals, evaluating both metrics provides a better assessment of
the inversion accuracy, as time-shifts, biases, or trends may affect the
metrics evaluation. For example, a time-shift in the predictions gen-
erally has a large effect on the rms error but does not affect the linear
correlation between predicted response and measurements. To assess
the precision of the inversion, the coverage ratio of a given confidence
interval, for example, the 0.90 coverage ratio, can be adopted. The
0.90 coverage ratio of the predictions defines the fraction of measured
samples within the 0.90 confidence interval. Hence, the optimal 0.90
coverage ratio is 0.90, i.e., when 90% of the measured samples are
within the predicted 0.90 confidence interval. For categorical proper-
ties, contingency (or confusion) analysis also is adopted, if reference
values of the categorical property are available for a portion of the data
set (e.g., a facies classification profile at the well location). This analy-
sis is based on the absolute frequencies as well as reconstruction and
recognition rates. The absolute frequencies count the number of refer-
ence samples classified in the predicted facies, whereas the
reconstruction and recognition rates are obtained by normalizing
the absolute frequencies by the total number of reference and pre-
dicted samples in each category (Grana et al., 2021).
Overall, all of the presented methods can be applied to exploration

or production settings; however, some algorithms might be more suit-
able for complete data sets. For example, supervised deep learning
often requires a large data set that is generally not available in the
exploration phase. Similarly, sampling algorithms often require a spa-
tial correlation model to build realistic reservoir realizations, and the
calibration of the spatial model parameters often is uncertain for sparse
data sets. Especially in the exploration phase, addi-
tional prior information from different sources can
be integrated with the Bayesian setting to reduce
the uncertainty of the model. In the rock-physics
inversion, core samples and well logs are com-
monly adopted for the calibration of the rock-phys-
ics model and likelihood function. These models
also can be adopted to expand the training data
set in supervised learning, to mimic geologic sce-
narios not sampled by well-log data. Most of the
case histories include data sets from the North Sea
(Avseth et al., 2001; Mukerji et al., 2001b; Eidsvik
et al., 2004a; Tetyukhina et al., 2010; Rimstad
et al., 2012); however, several case histories have
been presented all around the world including Gulf
of Mexico (Contreras et al., 2006, 2007; Bui et al.,
2011), Nile Delta (Aleardi and Ciabarri, 2017), and
Middle East (Kumar et al., 2018), among the
others. Grana and Della Rossa (2010) apply the
Bayesian Gaussian mixture rock-physics inversion
to a 3D seismic data set acquired in a clastic res-
ervoir, offshore Norway. The reservoir is part of a

fluvio-deltaic environment of the Middle-Late Triassic age that
presents a sequence of sand and shaly layers. The seismic data set
consists of four angle stacks. The rock-physics relation is based on
Dvorkin’s stiff sand model as it is calibrated using a set of well-
log data. The inversion is applied to a seismic subvolume of
10,000 traces in a depth interval of approximately 250 m. Figure 8
shows the 3D isosurface of 0.7 probability of oil sand, which identifies
the main reservoir layer. The inversion is performed trace-by-trace and
the calculation of the analytical solution takes approximately 8 min on
a standard workstation. De Figueiredo et al. (2018) apply an MCMC
method based on the Gibbs sampling algorithm for the seismic and
rock-physics inversion of 3D seismic data in an oil-saturated carbonate
field, offshore Brazil. The seismic data set includes three partial angle
stacks. Three lithofluid facies are defined based on core samples: oil-
saturated high-porosity carbonate, partially oil-saturated midporosity
carbonate, and low-porosity carbonate. Figure 9 shows the 3D isosur-
face of 0.65 probability of high-porosity carbonate. The Gibbs sam-
pling algorithm in de Figueiredo et al. (2018) takes approximately
10 h on a standard workstation for a 3D seismic volume of
141,750 traces with 312 samples per trace.
The application of probabilistic inversion methods for seismic res-

ervoir characterization presents several challenges. The calibration of
the rock-physics model often is difficult due to the approximations of
the physical models and the different physical relations in different
facies. The application of facies-dependent rock-physics relations re-
quires a facies classification model, which is generally unknown. Re-
cent advances in machine learning allow performing the rock-physics
inversion without an explicit formulation of the rock-physics relations;
however, these algorithms are generally based on implicit relations
inferred from a training data set. The construction of the training data
set often requires a spatial model as well as rock-physics models cov-
ering all facies of interest in the target zone. A biased training data set
might severely affect the inversion results. The application of fully
stochastic methods to large 3D seismic data sets also is challenging
due to the large computational costs. One of the main advantages of
stochastic methods is the quantification of the uncertainty of the model
variables; however, accurate uncertainty quantification might require a

Figure 8. Isosurface of 0.7 probability of oil-sand lithofluid class. The background slices
represent two 2D sections of porosity (modified after Grana and Della Rossa, 2010).
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large computational cost in practical applications. The curse of dimen-
sionality is one of the many challenges in practical applications in
seismic reservoir characterization and model realizations or 1D ap-
proximations often are adopted to make the computation feasible.
For example, hybrid algorithms combining geostatistical sampling
and optimization have been proposed in which the model realizations
are sampled in a 3D space but the optimization is performed trace-by-
trace. Similarly, sampling algorithms based on proposal distributions
obtained from linearized models can be adopted to draw samples from
a proposal distribution that approximates the posterior distribution.
The implementation of the algorithm, the ability to parallelize the
code, and the node availability largely affect the computational costs
of the proposed methods. Furthermore, standard practices in seismic
reservoir characterization do not often use this additional information.
Fluid-flow simulation models are generally applied to deterministic
models; hence, the uncertainty information obtained in seismic reser-
voir characterization often is neglected (Grant et al., 2020). The inte-
gration of the posterior distribution in fluid-flow simulation models is
an ongoing research topic and it focuses on the development of sto-
chastic fluid-flow simulation methods in which the initial conditions
are described by probability distributions.
Several research directions have been developed in the recent liter-

ature on seismic reservoir characterization. Probabilistic inversion
methods can generally be applied to any rock-physics model, includ-
ing petrophysical, geomechanical, and geochemical relations. These
multiphysics models are especially useful in complex reservoir struc-
tures with fractures and in CO2 sequestration operations in which geo-
chemical effects can play an important role. Most of the available
Bayesian inversion methods assume Gaussian distributions of the
prior model for the analytical tractability of the PDF; however, prob-
abilistic methods with non-Gaussian assumptions, including Gaussian
mixture, skewed-Gaussian, beta, and Dirichlet distributions, can be
developed. Complex prior models including spatial correlation struc-
tures also can be adopted in probabilistic seismic and rock-physics
inversion to improve the geologic realism of the predicted models
(Linde et al., 2015). Due to the large dimensions of the model and

data spaces, to speed up the inversion algorithm, dimensionality re-
duction methods can be applied to the model variables and the mea-
sured data to reduce the number of parameters in the inversion and
perform the inversion in lower dimensional spaces. Examples of these
methods include multidimensional scaling (Azevedo et al., 2014), sin-
gular value decomposition (Tompkins et al., 2011; Glinsky et al.,
2015), correlation analysis (Alvarez et al., 2015), and deep learning
algorithms (Canchumuni et al., 2019; Liu and Grana, 2020). However,
dimensionality reduction of the model or data domains might affect
the uncertainty predictions. Indeed, a reduction of the dimension of the
model variables generally makes the problem overdetermined leading
to a potential underestimation of the uncertainty, whereas a reduction
in the dimension of the data generally makes the problem underde-
termined leading to a potential overestimation of the uncertainty.
When the forward model is not completely known, or the inverse

operator is mathematically untreatable, deep learning methods also
can be adopted for the approximation of the inverse operator asso-
ciated with the unknown geophysical models. Current research di-
rections in deep learning focus on probabilistic approaches in which
weights and biases of the neural network are sampled from a pos-
terior distribution to obtain realizations of the model variables in
Bayesian and frequentist settings.

CONCLUSION

Probabilistic inversion of seismic data for the estimation of reservoir
properties is a necessary tool for seismic reservoir characterization
studies to quantify the rock and fluid properties and to assess their
uncertainty. Most of the methods available in the literature are based
on a Bayesian approach, and they generally differ from each other in
the model parameterization, the formulation of the physical problem,
the inversion algorithm, and the spatial constraints. Probabilistic inver-
sion can be performed according to analytical approaches, in which
the posterior distribution of the Bayesian inversion problem is ex-
pressed in a closed form, or numerical methods, in which the posterior
distribution is approximated by iteratively sampling and perturbing a
set of model realizations. In analytical methods, the uncertainty of the

model variables is expressed by the posterior dis-
tributions, whereas, in numerical methods, it is
generally represented by a set of model realiza-
tions. Probabilistic inversion methods have been
proven to be accurate and precise in the estimation
of the posterior probability of petrophysical prop-
erties even though the quantification of the prior
uncertainty might be affected by subjective inter-
pretations of the multiple sources of variability. In
current best practices, the uncertainty information
is not always used in forecasting and decision-
making processes, due to the computational cost
of fluid flow simulation methods; however, exper-
imental design methods as well as dimensionality
reduction and clustering analysis can be applied to
reduce the number of stochastic realizations ob-
tained from inversion or sampling, to select a sub-
set of models that represent the uncertainty of the
original set of reservoir models. It is critical that the
uncertainties in the petrophysical inversion be con-
veyed quantitatively to the engineers downstream
for reservoir performance forecasting and deci-
sion-making under uncertainty.

Figure 9. Isosurface of 0.65 probability high-porosity carbonate. The background slices
represent two 2D sections of seismic amplitudes (modified after de Figueiredo et al., 2018).
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DATA AND MATERIALS AVAILABILITY

Data associated with this research are available and can be ob-
tained by contacting the corresponding author.
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