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ABSTRACT

We presented a new methodology for seismic reservoir char-
acterization that combined advanced geostatistical methods with
traditional geophysical models to provide fine-scale reservoir
models of facies and reservoir properties, such as porosity
and net-to-gross. The methodology we proposed was a stochas-
tic inversion where we simultaneously obtained earth models of
facies, rock properties, and elastic attributes. It is based on an
iterative process where we generated a set of models of reservoir
properties by using sequential simulations, calculated the corre-
sponding elastic attributes through rock-physics relations, com-
puted synthetic seismograms and, finally, compared these
synthetic results with the real seismic amplitudes. The optimi-
zation is a stochastic technique, the probability perturbation
method, that perturbs the probability distribution of the initial
realization and allows obtaining a facies model consistent with

all available data through a relatively small number of iterations.
The probability perturbation approach uses the Tau model prob-
abillistic method, which provides an analytical representation to
combine single probabilistic information into a joint conditional
probability. The advantages of probability perturbation method
are that it transforms a 3D multiparameter optimization problem
into a set of 1D optimization problems and it allowed us to in-
clude several probabilistic information through the Tau model.
The method was tested on a synthetic case where we generated a
set of pseudologs and the corresponding synthetic seismograms.
We then applied the method to a real well profile, and finally
extended it to a 2D seismic section. The application to the real
reservoir study included data from three wells and partially
stacked near and far seismic sections, and provided as a main
result the set of optimized models of facies, and of the relevant
petrophysical properties, to be the initial static reservoir models
for fluid flow reservoir simulations.

INTRODUCTION

One of the aims of reservoir modeling is to describe the spatial
variability of reservoir properties: facies and the corresponding pet-
rophysical properties, such as porosity, permeability, net-to-gross,
and fluid saturation. The estimation of reservoir properties from
seismic data is a complex underdetermined nonlinear inverse pro-
blem. Several techniques, both deterministic and probabilistic, have
been developed to solve the problem and estimate the optimal re-
servoir model (Bosch et al., 2010) to be used as initial model in fluid
flow simulations. We can classify all the existing methodologies in
two categories: (1) multistep inversion methods and (2) stochastic
inversion approaches.
In multistep inversion methods, the problem of estimating

reservoir properties from seismic data is split into two or more

subproblems; generally, elastic properties are first derived from par-
tial stacked seismic data by elastic inversion; then, facies are point-
wise classified from the resulting volumes of elastic attributes by
statistical techniques, such as, for example, discriminant analysis,
neural networks, or Bayesian classification (see Avseth et al.,
2001; Mukerji et al., 2001). If a Bayesian elastic inversion
(Buland and Omre, 2003) is performed, we obtain in the first step
a set of volumes of probability of elastic properties that can be used
with a suitable likelihood function to classify seismic facies through
the Bayesian approach (Doyen, 2007). In more recent approaches,
reservoir properties such as porosity and clay content are estimated
from inverted seismic velocities (Grana et al., 2009), and facies dis-
tribution can be subsequently derived from the reservoir properties
volume. Similarly, in Grana and Della Rossa (2010), a three-step
probabilistic approach based on Gaussian mixture models is
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introduced to estimate the probability of seismic elastic attributes,
reservoir properties, and lithofluid classes or facies. The traditional
Bayesian framework (Tarantola, 2005) also has been adopted for
problems of lithofluid prediction from seismic data, as presented
in Buland et al. (2008). The probabilistic approach allows us to cor-
rectly propagate the uncertainty associated with input data and phy-
sical model approximations to the posterior probability of reservoir
properties. For non-Gaussian posterior distributions, different esti-
mators can be used to obtain the most likely model, such as mean,
median, or maximum a posteriori. However, if the inversion does
not include any sampling method of the posterior distribution, the
resolution of the estimated properties is the same as that of the input
conditioning data (seismic amplitudes) and the final volumes of fa-
cies and reservoir properties are representative of a coarser scale
than the characteristic scale of reservoir dynamic models. As a con-
sequence, these methodologies require the integration with geosta-
tistical methods to include seismic inversion results into reservoir
models (e.g., Mukerji et al., 2001). The most common strategy
(Doyen, 2007) is to perform sequential simulations to generate
high-resolution facies models by conditioning the simulation with
the “coarse-scaled” volume of facies estimated from seismic. Facies
models can be generated by two-point (sequential indicator simula-
tion [SISim], e.g., Journel and Gomez-Hernandez, 1989; Deutsch
and Journel, 1992) or multipoint geostatistics (single normal equa-
tion simulation, e.g., Remy et al., 2009). Both methods allow one to
include secondary information derived from seismic data to condi-
tion the simulations. The corresponding models of continuous re-
servoir properties are generated by sequential Gaussian simulation
(SGSim), conditioned by the facies model. Other methods recently
have been proposed, mainly in reservoir history matching, includ-
ing geomechanical models to condition reservoir simulations
(Wilschut et al., 2011).
On the other hand, stochastic inversion approaches are generally

based on the iterative application of a forward model and the inver-
sion step is performed using deterministic or stochastic optimization

techniques. In particular, models of subsurface properties (facies
and rock properties) are generated; then, suitable rock-physics
transforms are applied to generate the corresponding volumes of
the elastic properties. Finally, synthetic seismic volumes are com-
puted and compared to real seismic data to evaluate the mismatch.
The initial models usually are generated using previously men-
tioned geostatistical techniques (sequential indicator simulation
or multipoint geostatistics, and sequential Gaussian simulation)
to create fine-scaled reservoir models (Gonzalez et al., 2008).
The final model is found by applying a suitable optimization meth-
od. The main limitation of stochastic inversion techniques is that the
optimization step in real applications can be computationally expen-
sive. The optimization cannot be applied independently point-by-
point because the objective function depends on seismic data that
represent coarse scale information reflecting contrasts between sub-
surfaces. Moreover, as the solution of the inverse problem could
have local mimima, the final model could depend on the initial mod-
el. Different initial models could lead to different optimized models
with the same seismic response, especially when layers thinner than
the seismic resolution are included in the reservoir model. Different
optimization methods can be used. In Gonzalez et al. (2008), the
optimization is deterministic and is performed trace-by-trace.
The optimized profile at the current trace then is used to condition
the following simulations. Other methods have been introduced: for
example, Bosch et al. (2009) propose an iterative optimization
based on Newton’s method to simultaneously update the multiprop-
erty model. Another family of stochastic inversion approaches is
based on Markov chain Monte Carlo methods (Eidsvik et al.,
2004; Larsen et al., 2006; Gunning and Glinsky, 2007; Rimstad
and Omre, 2010; Ulvmoen and Omre, 2010; Hansen et al., 2012).
We propose a new approach that aims at estimating fine-scaled

reservoir models in a stochastic inversion by combining geostatis-
tical methods, such as sequential simulations (Deutsch and Journel,
1992) and a stochastic optimization technique called “probability
perturbation method” (PPM), (Caers and Hoffman, 2006), with

classical geophysical methods, such as seismic
convolution and rock-physics models (Mavko
et al., 2009). Our methodology mainly is aimed
to determine the optimal facies model for the
reservoir. In our approach, we use SISim to gen-
erate facies models, and the probability perturba-
tion method to perturb the probability used in
SISim. At each optimization step, a new facies
model is generated; reservoir properties, in par-
ticular porosity and clay content (or net-to-
gross), are then simulated by sequential Gaussian
simulation conditioned by the facies distribution;
elastic properties are subsequently calculated by
applying a rock-physics model and converted in
the corresponding time domain; and finally, the
synthetic seismic response is computed with a
traditional convolutional model (Figure 1). The
optimization objective function is the two-norm
of the difference between the synthetic seismic
and the real seismic data. A similar approach
has been presented in Gonzalez et al. (2008),
with the target being the direct inversion of facies
with the integration of rock-physics models
and multipoint geostatistics. However, in theirFigure 1. Workflow of stochastic inversion.
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method, at each iteration of the optimization, the perturbation of the
facies model is performed directly on the realization, whereas in our
approach, we perturb the underlying probability distribution used to
generate the model. We introduce the probability perturbation meth-
od to obtain the optimal model in a reasonable number of iterations.
In our methodology, we also account for nonstationarity by
introducing an additional probability distribution that can be
derived from different sources (seismic or AVO attributes, for
example).
We first apply the stochastic inversion to a synthetic case with the

objective of reconstructing the actual facies classification, to test the
validity of the method. As the proposed methodology includes dif-
ferent methods and models and several parameters have to be cali-
brated or assumed from prior knowledge or information from
nearby fields, we propose a sensitivity analysis that investigates
their effect on the corresponding estimations.
The method is then applied to a well log profile and to a 2D seis-

mic section of a real seismic reservoir characterization study in the
North Sea (offshore Norway). Several studies have been published
on a number of nearby fields in the North Sea (Avseth et al., 2001;
Mukerji et al., 2001; Avseth et al., 2005). In this example, we in-
tegrated into the methodology a further probability derived from
seismic data by means of a traditional Bayesian approach to speed
up the convergence and account for nonstationarity.

METHODOLOGY

The inversion methodology we propose attempts to directly in-
tegrate the petroelastic model and facies classification into the seis-
mic inversion workflow. The flowchart of the method is shown in
Figure 1. In the following subsections, we will describe each step of
the method and the techniques that are used. To clarify the notation,
we summarized the symbols in Table 1. The methodology is pre-
sented for a clastic reservoir, but it can be adapted to different lithol-
ogy reservoir conditions with the choice of a reliable rock-physics
model and a suitable facies classification.

Geostatistical methods

The application of geostatistics to reservoir modeling aims to in-
tegrate data from various sources (well, seismic, and production
data) into a consistent model to describe the rock properties of
the reservoir and their spatial continuity.
Sequential simulations are geostatistical methods that can be used

to generate realizations of a probability density function of either
discrete or continuous properties. These methods are based on var-
ious stochastic algorithms and are applied in reservoir modeling to
generate different realizations of reservoir properties. This proce-
dure produces high-resolution simulations of the property we are
interested in by sequentially visiting the grid cells of a 1D, 2D,
or 3D space along a random path. In each cell, the simulated value
is drawn from the local conditional distribution, which depends on
the prior distribution and on the previously simulated values in the
neighborhood of the given cell. This procedure is repeated for all the
cells of the grid. The methods available can be divided into two big
categories: two-point geostatistics and multipoint geostatistics.
Two-point geostatistics algorithms generally are faster as they only
account for the correlation between two spatial locations at a time,
the spatial continuity of the property distribution being ensured by
variogram models. On the other hand, multipoint geostatistics takes

into account the correlation between multiple spatial points, but as it
is very complex to analytically treat the associated conditional prob-
ability, the multipoint statistics are inferred from a training image
generated for example by unconditional Boolean modeling. In our
approach, we use two-point geostatistics algorithms, but if a suita-
ble training image is available with size at least larger than the re-
servoir size, then multipoint geostatistics could be easily integrated.
The two most common algorithms in two-point geostatistics are

SISim and SGSim (see Deutsch and Journel, 1992; Goovaerts,
1997). Sequential indicator simulation deals with discrete random
variables (for example, facies in reservoir modeling), while sequen-
tial Gaussian simulation deals with continuous random variables
(for example, porosity) (see Appendix A).
In our approach, facies are first simulated by SISim, possibly

with a secondary conditioning data derived from seismic (seismic
facies probability, for example); then, porosity is simulated by using
SGSim. In particular, the simulation of porosity for each facies is
performed independently of the simulations for other facies. Each
simulation is performed over the whole 3D grid, then the simula-
tions are reassembled into the final simulated porosity realization
according to the facies classification. To grid-cells not belonging
to the reservoir layer, a constant value of porosity (equal or close
to zero) is assigned. Finally, other reservoir properties (for example,

Table 1. List of symbols.

F Facies

fk kth facies value

NF Number of facies

u ¼ ðx; y; zÞ Generic spatial location (grid cell)

iðu; fkÞ Indicator variable associated to facies k at location u

dobs Observed seismic data

dsynth Synthetic seismic data

G Hard data (facies)

r Deformation parameter

irðu; fkÞ Updated indicator variable associated to facies k at
location u

θ Seismic angle stack

Nθ Number of seismic angle stacks

ωθk Weights of the objective function

S Seismic attributes

φ Porosity

ntg Net-to-gross

vclay Clay content

sw Water saturation

ρ Density

K Bulk modulus

μ Shear modulus

VP P-wave velocity

VS S-wave velocity

m Elastic properties (e.g., m ¼ ½IP; IS�)
R Rock properties (e.g., R ¼ ½φ; vclay�)
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net-to-gross, irreducible water saturation, and also permeability, if
necessary) are subsequently simulated by sequential Gaussian
cosimulation (CoSGSim) with porosity distribution or previously
simulated properties, as secondary information. In CoSGSim, a
continuous variable is simulated by accounting for the correlation
with another variable; this is the case for example of porosity and
net-to-gross or porosity and permeability.
At the end of this step, we obtain a reservoir model of facies,

porosity φ, and net-to-gross ntg. In our approach, net-to-gross is
transformed into clay content (vclay) by assuming vclay ¼
1 − ntg. Fluid saturation distributions (water, oil, and gas satura-
tions, namely, sw, so, and sg) could be simulated as well, but to
obtain realistic lithofluid models, we prefer to impose in the model
the oil- (or gas-) water contact and the gas-oil contact (if present)
and assume a constant distribution of the fluid within the so-
obtained fluid layers. To increase the realism of the model, we
could, however, simulate the irreducible water saturation through
sequential Gaussian simulation or cosimulation or deterministically
distribute it by assuming empirical relations with other properties
such as porosity or permeability.
One of the favorable features of sequential simulation is the abil-

ity to incorporate different types of conditioning data. However, if A
is the unknown property and B and C are the conditioning data (for
example, hard data B and soft data C), then, in many cases, the
analytical expression of the posterior probability PðAjB;CÞ can
be difficult to obtain. Journel (2002) has proposed an efficient meth-
od to integrate secondary data (soft data C) in the probability model
PðAjBÞ to get the posterior probability PðAjB;CÞ. To combine
PðAjBÞ and PðAjCÞ into PðAjB;CÞ, Journel (2002) proposes the
following expression:

PðAjB;CÞ ¼ 1

1þ x
; (1)

where

x
a
¼

�
b
a

�
τ1
�
c
a

�
τ2

(2)

and

a ¼ 1 − PðAÞ
PðAÞ ; b ¼ 1 − PðAjBÞ

PðAjBÞ ; c ¼ 1 − PðAjCÞ
PðAjCÞ :

(3)

PðAÞ is the prior distribution of the unknown property. The ratios
a, b, and c can be interpreted as the distance to an event occurring.
For example, the ratio a is the distance to the event A occurring prior
to knowing the information associated with B and C; if PðAÞ ¼ 1,
then a ¼ 0 and A is certain to occur. The parameters τ1 and τ2 ac-
count for the redundancy for each set of conditioning data B and C
(Krishnan, 2008). Setting τ1 ¼ τ2 ¼ 1 is equivalent to assuming a
form of conditional independence between PðBjAÞ and PðCjAÞ ex-
pressed in terms of permanence of ratio (equation 2). In other
words, we assume that the incremental contribution of data event
C to knowledge of A is the same after or before knowing B; this
assumption is, however, less restrictive than assuming indepen-
dence between data B and C.

The parameter τ2 can be modified to tune the contribution of the
conditioning data C; if τ2 > 1, then the influence of C is increased
(in our context, this could be the case where C is crosswell seismic
where the resolution is higher than common surface seismic); if
0 < τ2 < 1, then the influence of C is decreased (this could be
the case where the quality of the seismic is not optimal and the
low resolution of seismic could obscure facies transitions). In
our work, we assume τ1 ¼ τ2 ¼ 1, but a preliminary sensitivity ana-
lysis at the well location is necessary to investigate the effect of
these parameters. Several possible definitions are proposed for
the information content measure related to Tau-parameters (Liu,
2003), but the determination of the optimal parameter values is still
object of research.
Tau-model formulation allows avoiding the computation of the

probabilities PðBjCÞ and PðCjA; BÞ or PðBjA;CÞ that appear in
the exact decomposition of PðAjB;CÞ and that are generally more
difficult to calculate. In our application, the unknown property A is
the facies classification within the reservoir, B is the hard data, and
C is the seismic information.

Geophysical forward model

To compute the seismic response of the earth models generated
by sequential simulations, we first calculate the elastic properties,
such as velocities or impedances, within the reservoir model and
subsequently compute the corresponding seismic signature. We ob-
serve that in many real applications, the geocellular grid (corner-
point grid) used to model petrophysical and dynamic properties
in the reservoir does not coincide with the seismic grid. In particu-
lar, geocellular grid cells usually are larger than the bin size of the
seismic survey, which calls for a downscaling of the grid (Castro
et al., 2009). Furthermore, the velocity models must be converted
from depth domain to time domain to perform seismic convolution
and obtain synthetic seismic volumes. Depth-to-time conversion ne-
cessarily requires an accurate background velocity model, which is
consistent with the seismic processing steps performed on the real
seismic data set.
Elastic properties usually are computed through a rock-physics

model. This model is a set of equations that transforms petrophy-
sical variables, typically porosity, mineralogy (clay and sand con-
tent, for example, in clastic reservoirs), and fluid saturations into
elastic properties, such as P-wave and S-wave velocities and density
(or, as in many practical applications, P- and S-impedance). The
rock-physics model type depends on the reservoir rocks we are
dealing with; the set of equations can be a simple regression on well
data or a more complex physical model (Mavko et al., 2009). Gen-
erally, the model is first calibrated on well logs where petrophysical
and elastic properties are available; in fact, most of the models tra-
ditionally used contain one or more parameters (for example, cri-
tical porosity and coordination number for granular media models,
Mavko et al., 2009) that should be determined from core analysis or
estimated by comparing well logs and rock-physics model predic-
tions. Once the rock-physics model has been calibrated on well
logs, the model is applied, point-by-point, to the volumes of reser-
voir properties generated by sequential simulations. In the case of a
clastic reservoir, these properties are generally porosity φ, clay con-
tent vclay, and fluid saturations sw, so, and sg. Clay content is usual-
ly computed from net-to-gross as vclay ¼ 1 − ntg; this assumption
does not account for mineralogical texture related to laminated and
dispersed shale that can influence the elastic properties of the rock.
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However, if more accurate petrophysical relations linking net-to-
gross to lithological properties are available, they can be included
in the forward model. The rock-physics forward model can be de-
scribed as follows: First, we estimate the elastic properties of the
solid phase, i.e., bulk and shear modulus of the matrix, Kmat and
μmat, and density ρmat by using solid phase mixing laws (Voigt-
Reuss-Hill average or Hashin-Shtrikmann bounds); then, we com-
pute the elastic properties of the fluid phase, i.e., bulk modulus Kfl

and density ρfl by using fluid mixing laws (Reuss average or Brie’s
law); dry rock properties are then computed from solid phase prop-
erties by using one of the available theories in literature (for exam-
ple, granular media or inclusion models) to obtain dry rock bulk and
shear moduli Kdry and μdry; finally, the saturated rock properties,
Ksat and μsat are calculated by Gassmann’s equations (Mavko
et al., 2009). Density of the saturated rock is computed as a linear
combination of matrix density ρmat and fluid density ρfl weighted by
their respective volume fractions

ρ ¼ φρfl þ ð1 − φÞρmat (4)

and P-wave and S-wave velocities are calculated by definition as
function of saturated elastic properties Ksat and μsat and density ρ:

VP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ksat þ 3∕4μsat

ρ
;

s
(5)

VS ¼
ffiffiffiffiffiffiffiffiffi
μsat
ρ

.

r
(6)

The result of this first step of the forward modeling is a set of
volumes of elastic attributes: typically, P-wave and S-wave velocity
VP and VS and density ρ, or P- and S-impedances IP and IS. The
rock-physics model can be facies dependent, such as in the field
study we propose in the Application section. Data are subsequently
resampled in the seismic grid and converted from depth to time. In
our workflow, we downscaled the data using a subsampling tech-
nique, but more advanced downscaling methods could be used
(Castro et al., 2009). Depth-to-time conversion can be performed
by applying a velocity model obtained by collocated cokriging
using the stacking velocity volume used for the processing of seis-
mic amplitudes and sonic well-logs filtered at low frequency.
The second phase of the forward modeling step is the computa-

tion of the synthetic seismic signature. If partial stacked seismic
data (dobsðθÞ) are available, then we compute the corresponding an-
gle stacks. Otherwise, if only post stack data are available, we com-
pute only the zero angle seismic traces. We describe here the partial
stack case, as the post stack can be seen as a particular case of this
application. Synthetic seismic traces dsynthðθÞ are computed here by
seismic convolution; the forward modeling is based on a convolu-
tional model and Zoeppritz equations (Aki and Richards, 1980).
Specifically, at each trace, the synthetic seismogram is computed
by convolving the wavelets (estimated from the real data set) with
the reflection coefficients series:

dsynthðt; θÞ ¼ wðt; θÞ � Rppðt; θÞ (7)

where t is the traveltime,wðt; θÞ is the vector of the angle-dependent
wavelets, and Rppðt; θÞ is the vector of reflection coefficients.

Seismic reflection coefficients Rppðt; θÞ depend on the angle and
the material properties of the subsurface: An isotropic, elastic med-
ium is completely described by P-wave and S-wave velocity and
density. For angles smaller than the critical angle of the seismic data
set, we can alternatively use a linearized weak contrast approxima-
tion of Zoeppritz equations (Aki and Richards, 1980).
We point out that to perform the convolution, we estimate the

wavelets independently for each available angle gather. Both for-
ward models, seismic convolution and rock-physics model, lead
to underdetermined inverse problems. In our approach, to solve
these problems, we adopt a stochastic optimization method in
the inversion.

Stochastic optimization algorithm

The forward model results are included in an optimization loop to
find the optimal model of facies (F). We perform a seismic-driven
stochastic optimization where the objective function is the two-
norm of the difference between synthetic seismic data (dsynth)
and the real seismic amplitudes (dobs).
The stochastic optimization algorithm we used in our methodol-

ogy is based on the probability perturbation method (Caers and
Hoffman, 2006) and Tau model (see Journel, 2002; Krishnan,
2008). In our approach, the target proportions and the variogram
models are assumed to be assigned, but they could be made stochas-
tic and optimized simultaneously. However, preliminary sensitivity
tests in 1D showed that the convergence of the algorithm could be
more than 10 times slower.
We describe the methodology for a generic reservoir with NF

facies. In particular, the categorical variable F can assume NF pos-
sible values fk (for k ¼ 1; : : : NF). The facies value at a given loca-
tion is coded using a set of indicator variables iðu; fkÞ

iðu; fkÞ ¼
�
1 if fk occurs at u
0 otherwise

(8)

where u ¼ ðx; y; zÞ denotes a generic spatial location corresponding
to a grid cell in the reservoir grid.
We first select a random seed and determine a random path of

simulation; then, we generate an initial realization of facies by using
SISim and according to the selected variogram. We then simulate
porosity by using SGSim, cosimulate other rock properties by using
CoSGSim and apply the forward model to compute elastic proper-
ties and synthetic seismic data. This realization honors the hard data
(for example, the facies profiles at the well locations), but it does not
necessarily match the seismic data. The initial realization is then
perturbed; in the probability perturbation method rather than per-
turbing the initial realization directly, we propose a perturbation
of the probability model used to generate the realization. We denote
the underlying probability model of SISim as PðFkjGÞ where G
indicates the hard data (well data or previously simulated values).
We remind that in SISim, the probability of facies given hard dataG
is obtained at each location by indicator kriging (Appendix A).
At the following step of the optimization, we propose a new prob-

ability PðFkjdobsÞ as a linear combination of the indicator model
i0ðu; fkÞ associated to the initial realization and the prior probability
PðFkÞ of the facies

PðFkjdobsÞ ¼ ð1 − rÞi0ðu; fkÞ þ rPðFkÞ; (9)
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where r is the scalar deformation parameter to be optimized be-
tween zero and one (Caers and Hoffman, 2006). In our approach,
we used a uniform discretization of the interval [0,1] with spacing
0.1, which means that we evaluated the probability in equation 9 for
11 values of the parameter r. For each facies, the probability in
equation 9 is a function of spatial location u, but for simplicity
of notation we omitted the spatial dependency.
At each spatial location u, we now have to combine PðFkjdobsÞ

obtained from equation 9 with the prior probability PðFkÞ and the
probability PðFkjGÞ obtained from indicator kriging conditioned to
hard data to obtain the probability PðFkjG; dobsÞ. This is done by
using the Tau-model (Journel, 2002):

PðFkjG; dobsÞ ¼
1

1þ x
; x ¼ a

�
b
a

�
τ1
�
c
a

�
τ2
; (10)

where τ1 and τ2 are the Tau-model parameters, and a, b, and c are
obtained by equation 3 with A ¼ Fk, B ¼ G, and C ¼ dobs. In the
case τ1 ¼ τ2 ¼ 1 (i.e, in case of conditional independence), equa-
tion 10 simplifies as follows:

PðFkjG; dobsÞ ¼
a

aþ bc
. (11)

We sample from the distribution PðFkjG; dobsÞ to generate a new
facies model irðu; fkÞ and we repeat the above-described reservoir
modeling by simulating rock properties, computing elastic attri-
butes, and synthetic seismic data dsynthðθ; rÞ. For each facies, the
probability of equation 10 depends on the scalar parameter r; in
other words, equation 10 provides a set of distributions and the for-
ward model result is a set of models that depends on the deforma-
tion parameter r. For each model, we calculate the objective
function

OðrÞ ¼
XNθ

k¼1

ωθk

���dobsðθkÞ − dsynthðθk; rÞ
���2; (12)

where Nθ is the number of angle stacks and the ωθk are the weights
assigned to the different angle stacks based on the quality of the
seismic data set. For example, we could choose the weights directly
proportional to the signal-to-noise ratio (S/N) of the angle stacks.
We finally perform a 1D optimization on the deformation para-
meter r.
However, the search space provided by the set of distributions in

equation 9 is too limited because it is obtained as a linear deforma-
tion of two realizations. Thus, we introduce another optimization
loop where we change the random seed and the optimal realization
irðu; fkÞ obtained at the previous step replaces the initial realiza-
tion i0ðu; fkÞ.
The optimization step is performed within two nested loops. In

the outer loop, we change the random seed until a good match be-
tween the synthetic seismic traces of the trial model and the real
seismic traces is achieved. At each step, we perform a 1D optimiza-
tion (inner loop) on the deformation parameter r of the probability
perturbation method to obtain the parameter that minimizes the er-
ror between the synthetic and real seismic data. If the error of the
new model is less than the error of the previous model, we accept
the new model and we set i0ðu; fkÞ ¼ irðu; fkÞ, otherwise, we
change the random seed and repeat the previously described steps.
We iterate this procedure until the error is less than a fixed tolerance
value T, which can be selected depending on the quality of seismic
data, for example, in terms of signal-to-noise ratio.
The basic structure of the algorithm (Figure 2) can be described

as follows:

1) Select a random seed, generate an initial realization of facies
(namely i0ðu; fkÞ) using SISim, simulate rock properties and
apply the geophysical forward model.

2) Perform a seismic-driven stochastic optimization using the
probability perturbation method:

2a) In the outer loop, change the random seed and iterate to
obtain a good match, i.e., OðrÞ < T.

2b) In the inner loop, perform a 1D optimization to obtain the
optimal deformation parameter r.

In this inner loop, we propose a new probability PðFkjdobsÞ, ob-
tained as a linear combination of the realization i0ðu; fkÞ and the
prior probability PðFkÞ of the facies (equation 9). We then compute
the conditional probability PðFkjG; dobsÞ by using Tau-model
(equation 10), then generate a new facies model irðu; fkÞ, apply
the forward model, and evaluate the objective function of equa-
tion 12. If OðrÞ < T, then we stop the algorithm, otherwise, we
set i0ðu; fkÞ ¼ irðu; fkÞ and repeat the procedure (steps 2a and
2b), with a different random seed.

Secondary information

To speed up the convergence, we can include a further probability
term in the Tau model, for example, the probability of facies ob-
tained by inverted seismic attributes, P�ðFkjSÞ, where P� represents
the pointwise probability of facies conditioned by a set of seismic
attributes S at seismic scale, i.e., at low resolution. The probability
of facies at seismic scale can be obtained by using different methods
and it can be conditioned by different data, for example, seismic
impedances P�ðFkjIP; ISÞ, seismic amplitudes P�ðFkjdobsÞ, as in
Grana and Della Rossa (2010), or AVO properties R0 and Gr,
P�ðFkjR0; GrÞ (see Mukerji et al., 2001). This step allows us toFigure 2. Flowchart of PPM algorithm.
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account for low-resolution secondary informa-
tion, i.e., the probability of facies conditioned
by seismic, which improves the convergence
speed and accounts for nonstationarity of the
data. The star symbol in the following will indi-
cate the probability of facies at seismic scale used
as a low resolution trend to condition stochastic
inversion simulations. This probability can be in-
tegrated into the workflow in different ways: In
our method, we used the Tau-model, by modify-
ing equation 10 as follows:

PðFkjG; S; dobsÞ ¼
1

1þ x
;

x ¼ a

�
b
a

�
τ1
�
c
a

�
τ2
�
d
a

�
τ3
;

(13)

where

d ¼ 1 − P�ðFkjSÞ
P�ðFkjSÞ

. (14)

However, we point out that other methods could
be adopted, such as collocated cokriging or
Bayesian updating in sequential indicator simu-
lations (Doyen, 2007).
Different sources of information can be used

to obtain low resolution estimation of facies dis-
tribution, i.e., to derive the probability of facies at
seismic scale P�ðFkjSÞ. We adopt a probabilistic
approach to seismic facies classification consist-
ing of three main steps: (a) seismic inversion to
recover elastic attributes from seismic ampli-
tudes, (b) estimation of petrophysical properties
from elastic attributes, and (c) facies classifica-
tion to classify seismic facies from petrophysical

Figure 3. Synthetic well log data set (well A), from left to right: effective porosity, volume of clay, water saturation, P-wave and S-wave
velocity, density, and facies profile (green represents shale, brown represents silty-sand, and yellow represents sand).

Figure 4. (Top) Rock-physics crossplots of well data set: clay content versus effective
porosity (top left), P-wave velocity versus effective porosity (top right), S-wave velocity
versus P-wave velocity (mid-left), and VP∕VS ratio versus P-impedance (mid-right) col-
or coded by facies classification (green represents shale, brown represents silty-sand,
and yellow represents sand). (Bottom) Joint probability of petrophysical properties dis-
tribution: conditional probability contours color coded by facies (bottom left), and joint
probability surface (bottom right).
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properties (Grana and Della Rossa, 2010). A full Bayesian approach
has been adopted based on the integration of the probabilities ob-
tained from Bayesian seismic inversion and statistical rock-physics
model. First of all, a Bayesian seismic inversion is performed
(Buland and Omre, 2003) to obtain the probabilities of impedances
from seismic amplitudes (step a). Then, a probabilistic characteri-
zation of petrophysical properties is applied (Grana and Della
Rossa, 2010) to estimate the probability of porosity and clay content
(step b) by integrating the statistical rock-physics model with the
probabilities of impedances obtained from Bayesian elastic inver-
sion. Finally, a probabilistic facies characterization is performed
(Grana and Della Rossa, 2010): The estimation of facies probabil-
ities P�ðFkjSÞ conditioned by seismic attributes (step c) is obtained
combining petrophysical properties probabilities (step b), log-facies

classification, and seismic information from Bayesian elastic inver-
sion (step a). The mathematical details of this method are presented
in Appendix B. The final results of this probabilistic multistep ap-
proach are the probability volumes P�ðFkjSÞ of seismic lithofacies
that are used in stochastic inversion as additional information in the
Tau model to condition the geostatistical simulations and account
for nonstationarity.

Figure 5. Synthetic partial-stacked seismic data at well location,
from left to right: near, mid and far stack, corresponding to the in-
cident angles of 12°, 24°, and 36°.

Figure 6. Variograms of porosity estimated at the well location,
from top to bottom: variogram of porosity in shale, silty-sand,
and sand.

Figure 7. Stochastic inversion results at well loca-
tion, from left to right: actual facies classification,
initial realization, and partial results of the optimi-
zation loop after 3, 10, and 25 iterations classifi-
cation (green represents shale, brown represents
silty-sand, and yellow represents sand). The last
result (right plot) is the optimized model according
to the fixed tolerance.
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In general, P�ðFkjSÞ can be obtained from any
set of seismic attributes, such as inverted impe-
dances, AVO attributes, and full waveform inver-
sion properties; however, the weight of this
information, i.e., the exponent τ3 in the Tau mod-
el (equation 13), should be tuned after a sensitiv-
ity analysis, as all these properties are derived
from the same seismic data set that appears in
the optimization objective function. In our appli-
cation, we tested the following set of parameters
f0.5; 1; 2.5g. By assuming a high exponent τ3,
we increase the convergence speed, but we tend
to disregard the prior information related to the
spatial continuity model described by the vario-
gram. In particular, we generally obtain a model
with a resolution closer to the seismic one. This
result can be explained by the fact that we are
accounting seismic information in two different
terms c and d with a relatively high weight in
equation 13. According to the theory, the para-
meters of the Tau-model measure the additional
contribution of the probabilistic information they
are associated with. Because the parameter τ3 is
associated with the seismic-derived probability
and this information is already accounted for
by the probability term PðFkjdobsÞ, we tend to
exclude values greater than or equal to one.

Figure 8. Synthetic seismograms (red) corresponding to the optimized model of Figure 7
compared to input seismic traces (black). From left to right: near, mid and far stack,
corresponding to the incident angles of 12°, 24°, and 36°.

Figure 9. Set of 10 different realizations obtained by
stochastic inversion: 10 optimized models (obtained
from 10 different runs) compared to the actual classi-
fication (green represents shale, brown represents
silty-sand, and yellow represents sand).
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APPLICATION

The application of stochastic inversion is first presented in a 1D
synthetic case to show the different steps of the method and verify
its reliability. Then, we applied the methodology on a real reservoir
study in the North Sea where a complete data set, including a set of
well log data coming from three wells and partial stacked seismic
data, is available.

Synthetic case

For the synthetic test, we built a set of pseudologs to mimic a
realistic depositional turbiditic system along a well profile (namely,
well A). This synthetic case models a clastic reservoir filled by oil;
the top of the reservoir is supposed to be positioned at around
2000 m depth at the well location and the oil-water contact is fixed
at 2100 m. We focus on a depth interval of 200 m, by assuming a
thick overcap of clay on top of the reservoir. We created a synthetic
facies sequence and a set of pseudologs mimicking the behavior of
rock and elastic properties associated to the facies profile, and we
finally generated synthetic seismic traces at three different angle
stacks: 12°, 24°, and 36°.

Three facies are defined: sand, silty-sand, and shale. We first
modeled the synthetic stratigraphic sequence in the well by a
first-order Markov chain and then distributed the corresponding
rock properties.
Markov chains are a statistical tool that has been used in geophy-

sics to simulate facies sequences to capture the main features of the
depositional process (Krumbein and Dacey, 1969). Markov chains
are based on a set of conditional probabilities that describe the de-
pendency of the facies value at a given location with the facies va-
lues at the locations above (upward chain) or the locations below
(downward chain). The chain is said to be first-order if the transition
from one facies to another depends only on the immediately pre-
ceding facies. The conditional probability of the transitions are
the elements of the so-called transition matrix P, where the generic
element Pij represents the probability of a transition from the facies
i located above the interface to the facies j located below. In our
example, we estimated the input parameters, i.e., prior proportions
and transition probabilities, from a real well data set. The transition
matrix is estimated by counting the number of transitions in the fa-
cies classification at the well:

P ¼

sh si sa2
4 0.9 0.05 0.05

0 0.93 0.07

0.05 0 0.95

3
5 sh

si
sa

: (15)

Rows correspond to shale, silty-sand, and sand at the generic
depth location z, and columns correspond to shale, silty-sand,
and sand at the generic depth location z − 1. In other words, in
our facies profile, we never have a shale on top of a silty-sand
or a silty-sand on top of a sand. The terms on the diagonal of
the transition matrix are related to the thickness of the layers; in
fact, the higher the numbers are on the diagonal, the higher the prob-
ability is that no transition will be observed (i.e., high probability
that a facies has a transition to itself), and as a consequence, the
thicker the layer will be. We define the first sample of the well pro-
file as shale to have a shale layer above the top of the reservoir.
At the next step, the facies value is sampled from the conditional
probability PðFijFi−1Þ, and we iterate the sampling till the bottom
of the interval (Figure 3).
Through this method, we generated a facies profile that is as-

sumed to be the true model of this synthetic example. The facies
proportions in this well profile are 0.28, 0.34, and 0.38, respectively
for sand, silty-sand, and shale. We then generated pseudologs of
rock properties, namely porosity and clay content (Figure 3).
The pseudologs must be vertically correlated within each facies
and at the same time they must be correlated between each other,
as porosity in general almost linearly depends on the clay content of
the rock. In our data set, we created the pseudologs of porosity and
clay content by sampling from three bivariate Gaussian distribu-
tions, one for each facies. We assumed a correlation of 0.8 for
every facies and we included a vertical correlation by multiplying
(Kronecker product) the covariance matrices of each distribution by
a spatial covariance matrix obtained from a 1D (vertical) exponen-
tial variogram with correlation range 7.5 m (for every facies). The
simulated logs finally are reassembled into the final pseudologs ac-
cording to the facies classification profile. Then, we computed the
corresponding pseudologs of density and elastic properties P-wave

Table 2. Confusion matrix of the reference case (T stands for
true facies, C stands for classified facies).

T shale T silty-sand T sand

C shale 0.81 0.06 0.13

C silty-sand 0.11 0.74 0.15

C sand 0.07 0.05 0.88

Table 3. One-way sensitivity analysis of the synthetic
inversion test: The first column shows the different cases. In
the second column, we report the main diagonal of the
confusion matrices of the different cases, and in the third
column, we show the average of the elements of the main
diagonal (sum of the trace of the matrix normalized by the
number of facies).

Diagonal
confusion matrix

Percentage of
identified samples

True model 1.00, 1.00, 1.00 100%

Reference case 0.81, 0.74, 0.88 81.0%

Low signal-to-noise
(S∕N ¼ 2.5)

0.76, 0.72, 0.73 73.6%

Rock-physics model
(stiff sand)

0.92, 0.69, 0.78 79.6%

Wavelets 0.79, 0.83, 0.77 79.6%

Variogram (long range) 0.71, 0.48, 0.79 66.0%

Variogram (short range) 0.76, 0.59, 0.69 68.0%

Biased prior proportions 0.93, 0.52, 0.66 70.3%

Number of angle stacks
(Nθ ¼ 1)

0.55, 0.33, 0.68 52.0%

Number of angle stacks
(Nθ ¼ 2)

0.84, 0.49, 0.75 69.3%

Fluid effect 0.80, 0.76, 0.77 77.6%
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Figure 11. Rock-physics model: (left) P-wave velocity versus effective porosity; (right) S-wave velocity versus effective porosity, color coded
by clay content. Black lines represent constant-cement sand model for different clay contents (from top to bottom: 0%, 25%, 50%, 75%, and
100%).

Figure 10. Real case application:well logdata set fromwell two (calibrationwell). From left to right: P-waveandS-wavevelocity, effectiveporosity,
clay content, water saturation, and actual facies classification (shale in green, silty-sand in brown, stiff sand in light brown, soft sand in yellow).

Stochastic facies inversion of seismic data M63

Downloaded 18 Jun 2012 to 128.12.219.21. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/



and S-wave velocity by means of the soft sand model (Mavko et al.,
2009). Rock-physics models are generally good approximations of
the elastic behavior of rocks, but these relations cannot account for
the heterogeneity and the natural variability of the rocks in the sub-
surface. We then added a random error vertically correlated (the
correlation range is 1 m) to mimic a more realistic behavior similar
to measured well log data. Traditional rock-physics crossplots and

the estimated probability distributions are shown in Figure 4. Final-
ly, we computed the synthetic seismograms corresponding to three
angle stacks at 12°, 24°, and 36° by using three Ricker wavelets with
three different center frequencies at 30, 25, and 20 Hz (Figure 5).
PP-reflection coefficients have been computed with Aki-Richards
approximation.
In the inversion methodology, we assume that the rock-physics

model is known (but the error is unknown) and the three wavelets
corresponding to the three angle stacks are known as well. We fi-
nally assume that the facies proportions of the true model are known
and correspond to the real proportions of the well log profile. The
variograms of facies and rock properties used in sequential simula-
tions and the crosscorrelation between rock properties have been
estimated from the pseudologs (Figure 6). For the three facies,
we assumed a Gaussian model with correlation ranges of 3, 10,
and 4, respectively, for shale, silty-sand, and sand.
We show the results of the stochastic inversion methodology ap-

plied to the synthetic well A, assuming perfect signal-to-noise ratio
in Figures 7 and 8. The facies profile classified by our approach has
a good match with the actual classification; good results are ob-
tained after only 25 iterations, which correspond to 275 evaluations
of the forward model (because each iteration requires 11 forward
model evaluations to locate the optimal parameter r). The more
we proceed with the iterations, the lower the acceptance rate is.
In fact, even if we perform 100 iterations, the improvement com-
pared to the result obtained after 25 steps is quite small. In other
words, the stochastic optimization used in this approach quickly
reaches a sufficiently small neighborhood of the minimum, then
the convergence to the exact minimum becomes slower. We point
out that because seismic data generally are noisy, we do not want to
match the data perfectly, but only match the data within a certain
tolerance (T). The convergence can be sped up by introducing sec-
ondary information describing the probability of facies at seismic
frequency.
We then applied the methodology several times by using different

random seeds; the results of the optimization after a fixed number of
iterations will be statistically similar, but every time different in the
details. In Figure 9, we show the variability between the solutions
we obtained by plotting 10 of 25 different runs; this variability
mainly depends on the tolerance T we fixed to satisfy the conver-
gence criterion (OðrÞ < T).
Finally, we used this synthetic example to perform a sensitivity

analysis on different parameters (for each case, one parameter is
changed at a time):

• signal to noise ratio of seismic data: S∕N ¼ 5 (good quality
seismic) or S∕N ¼ 2.5

• rock-physics model: known (we use the same rock-physics
model used for the model generation) or unknown

• wavelets: known (we use the same wavelets used for the syn-
thetic seismic generation) or estimated from real seismic data

• variograms: real variogram or a different one with wrong
correlation ranges

• prior proportions of facies: real proportions or different ones
• number of angle stacks: poststack seismic or partial stack

seismic (two or three angles)
• fluid effect: oil water contact known or ignored

The results of the different cases have been quantitatively com-
pared by computing for each case the corresponding confusion

Table 4. Mean values of petroelastic properties in the
different facies. The values of porosity and clay content have
been estimated from well log data, and elastic properties
values have been computed using the rock-physics model.

Shale Silty-sand Stiff sand Soft sand

Porosity 17% 24% 28% 30%

Volume of clay 47% 35% 28% 14%

VP (m∕s) 2591 2872 2820 2581

VS (m∕s) 1112 1292 1313 1198

Density (g∕cm3) 2.26 2.18 2.13 2.12

Figure 12. Marginal probability density functions of effective por-
osity and clay content conditioned by facies classification. The
PDFs of petrophysical properties are used to distribute rock proper-
ties within the reservoir model at each iteration of stochastic inver-
sion (shale in green, silty-sand in brown, stiff sand in light brown,
and soft sand in yellow).
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matrix associated to the facies classification. The confusion matrix
is a tool used in supervised learning to visualize the quality of the
classification. In our application, each column of the matrix repre-
sents the percentage of samples in a predicted facies, whereas each
row represents the percentage of samples in the actual facies. The
confusion matrix of the reference case shown in Figure 7 (right plot)
is summarized in Table 2. For all three facies, we obtain a satisfac-
tory reconstruction rate.
The results of the sensitivity tests are collected in Table 3 where

we report the main diagonal of the confusion matrix and the per-
centage of correctly classified samples (normalized sum of the trace
of the confusion matrix). Even though these statistics are not ex-
haustive to evaluate the quality of the inversion, this sensitivity ana-
lysis confirms that the number of angle stacks and the quality of the
seismic data are the major sources of uncertainty in seismic reser-
voir characterization studies. The rock-physics model is essential in
this methodology; however, the degree of accuracy of the model is
usually quite high because the model can be calibrated at the well
locations by using well data. Finally, in our tests, we observed that
even if we underestimate the correlation range of the variogram, we
still obtain good results in the optimization; conversely, if we over-
estimate the range, then the optimization model cannot reproduce
the correct thickness of the sediments, but it tends to create thicker
layers. However, we point out that these results are not completely
general and they depend on the parameters we chose. For example,
if we use the wrong rock-physics model, but the predictions are
close enough to the observed data values (for example, a multilinear
regression), or if we ignore the fluid effect, but the velocity in hy-
drocarbon sand is close to the velocity in brine sand, then the dif-
ference between the inversion results with the correct parameters
and the ones with wrong assumptions could be small. Similarly,
the results of the sensitivity analysis on variogram parameters
and prior proportions could be worse if we introduce a more sig-
nificant bias in the parameters.

Real case

As a final step, we applied the methodology to
a real seismic reservoir characterization study in
the North Sea (offshore Norway). It is a deep-
water clastic reservoir made of sand and shale
and filled by oil. Four seismic-scale sedimentary
lithofacies can be identified: soft sand and stiff
sand (both filled by oil in the upper part of the
reservoir), silty-sand with clay dispersed in it,
and shale. The reservoir is located at approxi-
mately 2150 m; the oil-water contact was mea-
sured at 2190 m at the well locations and it is
supposed to be known in the inversion.
The data available are partially stacked seismic

data (near stack corresponding to 8° and far stack
to 26°), a set of horizons for the reservoir level we
are interested in, and five well log data sets. Well
two has been used as a calibration well as it con-
tains the main acquired logs: P-wave velocity,
S-wave velocity, gamma ray, density, neutron
porosity, and resistivity. Data of well two and
well three are used to condition the simulations
along the 2D line used to test the methodology in

2D. Finally well five, located outside the seismic survey, is used as
an additional test.
First, the method has been tested at the well two location to pre-

dict the facies distribution from seismic data. The lithofacies clas-
sification has been performed using sedimentological information,
core analysis, and a clustering technique applied to petrophysical
curves: effective porosity, volume of clay, and volume of sand
(Figure 10). A rock-physics model has been calibrated at the well
location; the more suitable model for this scenario is a constant-ce-
ment sand model (Avseth et al., 2005). This model is a combination
of the contact-cement model and friable sand model (Mavko
et al., 2009), where we assumed a critical porosity equal to 0.4
and a coordination number of nine (Figure 11); however, we point
out that in some wells (wells two and five), we can identify a re-
latively thick layer of soft sand at the top of the reservoir; therefore,
in this facies, a soft sand model has been applied to explain the low-
velocity values measured at the well locations in the corresponding
intervals. From well data, we also can infer the marginal distribution
of petrophysical properties conditioned by the facies classification
(Figure 12); the estimated PDFs are used in the forward model to
generate the simulated realizations at each iteration of the
stochastic inversion. We assumed for simplicity, Gaussian distribu-
tions, but SGSim does not require that the prior distribution is Gaus-
sian and other distributions could be used. The descriptive statistics
of the different properties are shown in Table 4.
The results of the 1D application with a perfect synthetic seismic

trace (S∕N ¼ ∞) are shown in Figure 13, where we reconstruct the
lithofacies classification at the well two location. In this test, we
assumed that the wavelets were known. In other words, the wavelets
used in the inversion were the same as those used in the forward
modeling performed to generate the synthetic seismic trace. The
actual facies profile is severely nonstationary and the estimation
of variogram parameters was not reliable; we then assumed the
same exponential model for all the facies with correlation range

Figure 13. Inversion results at well two location with synthetic seismic data, from left to
right: actual facies classification, upscaled facies profile, seismic facies probability, in-
itial model, optimized model after 50 iterations (shale in green, silty-sand in light brown,
stiff sand in brown, and soft sand in yellow).
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equal to 2.5 m. We notice that even if we start from an initial model
with a short vertical correlation range, we obtain a good result in the
inversion: After 50 iterations (right plot), the error between the input
seismic and the synthetic seismic generated from the optimized
model is lower than the fixed-tolerance T’, and the match between
the optimized facies profile and the actual classification is satisfac-
tory. The tolerance T’ is fixed such that the ratio between the var-
iance of the signal and the variance of the residuals approximates
the S/N. In this example with perfect synthetic seismic, we stop the
convergence when the ratio approximates 10. The upscaled classi-
fication (see Stright et al., 2009) over a support of 1 m is provided
for comparison. As already pointed out, the tolerance value used to
stop the inversion process depends on a number of factors, in

particular, the quality of seismic data (signal-to-noise and resolu-
tion). The more reliable is the seismic data set, the smaller the tol-
erance can be. In most of the cases, we do not want to perfectly
match the seismic data, but we aim to obtain a model (or a set
of models) that match the data within a fixed tolerance. In Figure 14,
we show two different sets of inverted models; on the top, we show
25 inverted models obtained by imposing a small tolerance T’ (on
average, 51 iterations are needed to reach the required accuracy); on
the bottom, we show 25 inverted models obtained with a larger tol-
erance equal to 1.2T’ (33 iterations required on average). By de-
creasing the tolerance value, we improve the match between the
input seismic and the synthetic seismic of the generated models,
but we increase the computational time to reach the convergence

Figure 14. Multiple realizations with different tolerance conditions: (top) 25 simulations obtained with a small tolerance; (bottom) 25 simula-
tions obtained with a larger tolerance (shale in green, silty-sand in brown, stiff sand in light brown, and soft sand in yellow). For each set of
simulations, we plot the ensemble average (e-type) and compare the results with the upscaled facies classification at well two location.
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condition. The different variability within the two sets of realiza-
tions is shown by the e-types of the two ensembles (Figure 14).
The e-type is the ensemble average of the set of models and it is
a continuous variable.
We then performed the same inversion exercise with the real

collocated seismic trace (Figure 15). The quality of the inversion
is worse than the previous case, but it is still satisfactory as pointed
out by the confusion matrix reported in Table 5, where we obtain
high recognition indexes for all the facies. In both applications with
synthetic and real seismic, we used a low resolution probability es-
timated at the well location as secondary information. In this appli-
cation, we assumed that the parameters of the Tau-model are:
τ1 ¼ τ2 ¼ 1 and τ3 ¼ 0.5. The use of this probability is necessary
to account for the nonstationarity of the actual facies classification.
In Figure 16, we show the convergence of the methodology with
and without secondary information and we show the boxplots of
the normalized error of 25 optimization runs, each of them consist-
ing of 50 iterations. We notice that the convergence is much slower
if no secondary information is used, and the average error is
generally higher.
We then applied the methodology to two other wells (wells three

and five) by using the same parameters for var-
iograms, prior distributions of properties, and
forward models calibrated at well two. Well three
does not present soft sand in the classification,
whereas the scenario in well five is similar to
the calibration well. In both cases, the inversion
results are good (Figure 17), even though we no-
tice that we cannot reproduce the thin layers be-
low a certain thickness. We could actually obtain
a set of models with the same vertical correlation
observed at the well by using a shorter correla-
tion range and a larger tolerance T and/or a
smaller value of the Tau-model parameter τ3
(equation 13) related to the low-resolution infor-
mation. In fact, if we assign a high weight to seis-
mic data (low-tolerance T and/or high-parameter
τ3), we tend to match the seismic data with high-
er accuracy and we cannot recover thin layers un-
der the seismic resolution. If a larger tolerance is
fixed or a lower weight is assigned to seismic
data, we could recreate thin layers according
to the input variograms; however, in this applica-
tion, we retain that some of the layers visible in
the actual profile are due to clustering artifacts in
the log-facies classification process.
As conclusion of this study, we perform the

stochastic inversion in terms of facies of a 2D seismic section pas-
sing through wells two and three. The near and far stacks are shown
in Figure 18 and the horizon (in time domain) of the top reservoir is
superimposed. The seismically derived probability of facies
P�ðFjSÞ has been computed following the approach proposed in
Grana and Della Rossa (2010) (Appendix B). The maximum a
posteriori of the so-estimated seismic facies probability converted
in depth within the geocellular grid, is shown, as a reference, in
Figure 19 (bottom right). The velocity model used for the time-
to-depth conversion has been obtained by applying a kriging meth-
od to the 2D section and by using filtered sonic logs (at a frequency
of 4 Hz).

The initial model has been generated using SISim. The 2D var-
iograms of the facies have been estimated using information from
previous studies on this field and nearby fields of the same area, and
the prior information assumed by averaging the facies proportions
at the well locations. The 2D variograms describe the spatial con-
tinuity model of the facies. For each facies, we assumed an expo-
nential model with the following parameters: The lateral correlation
range is 1000 m for soft sand, 2000 m for stiff sand, 2500 m for
silty-sand, and 800 m for reservoir shale; the azimuth is 0° for all the
facies. The optimization is performed for all traces simultaneously.
The main result of this study is the optimized facies model

(Figure 19, top). This result honors the prior information and the
spatial continuity of the data; furthermore, the optimized realization
honors the seismic data. Here, we show the results after 10 itera-
tions, corresponding to 110 2D simulations, in terms of facies, por-
osity, P-wave velocity, and the corresponding synthetic seismic
(Figure 19). For simplicity, the porosity of the nonreservoir shale
has been set constant equal to 0.05. As expected, the areas with
higher variability are the sequences of silty-sand and stiff sand
in the lower part of the reservoir.

Figure 15. Inversion results at well 2 location with real seismic data, from left to right:
actual facies classification, upscaled facies profile, seismic facies probability, initial
model, optimized model after 50 iterations (shale in green, silty-sand in brown, stiff
sand in light brown, and soft sand in yellow).

Table 5. Confusion matrix of the inversion results obtained
by stochastic inversion at well two location (T stands for
true facies, C stands for classified facies).

T shale T silty-sand T stiff sand T soft sand

C shale 0.95 0.05 0 0.00

C silty-sand 0.09 0.81 0.10 0

C stiff sand 0.07 0.08 0.72 0.13

C soft sand 0 0.10 0 0.90
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As this application points out, the main advantage of stochastic
techniques is that the estimated facies model has a higher resolution
than the model obtained from the maximum a posteriori of the prob-
ability of facies directly inferred from seismic, and it can be directly
used as initial model in fluid flow simulation, without the integra-
tion of additional geostatistical methods.

DISCUSSION

In this paper, we summarized the main results obtained by apply-
ing a new methodology for inversion of seismic data in terms of
facies. Most of the geostatistical methodologies published so far
require large computational times to be performed for real reservoir
studies. The introduction of the probability perturbation method al-
lows us to reduce the computational time, compared to other sto-
chastic optimization methods. The probability perturbation method
incorporates the Tau model, which is a probabilistic model to ac-
count for information coming from different sources. By using the
Tau model, we can integrate well and seismic data and we could
potentially extend the methodology to include other information
such as EM data or production data.
In our approach, we used two-point geostatistics methods to ob-

tain models of facies and petrophysical properties; however, the pre-
sented stochastic inversion could be applied also with multipoint
based priors if a suitable training image is available. Multipoint
geostatistics could be necessary in lithofluid inversion to avoid non-
physical scenarios such as brine sand on top of oil sand. In our
study, we assumed that the oil-water contact was known.
We point out that in both cases, it is important to include second-

ary information in the methodology, specifically in the Tau model;
this information represents the probability of facies at seismic scale,
or in a broad sense, the low-resolution probability of facies. This
additional step has two goals: The first one is to speed up the con-
vergence as shown in our application, and the second is to account

for nonstationarity. Two-point and multipoint
geostatistics are based on the assumption of sta-
tionarity, but in most of the cases this assumption
is not completely satisfied. In our real case appli-
cation, for example, silty-sand and stiff sand ap-
proximately have a stationary behavior in the
reservoir layer, but this is not true for soft sand,
which appears only at the top of the reservoir.
The scenario is more complex if we consider
the shale layers at the top and at the bottom of
the reservoir. The layers bordering the reservoir
can be neglected in reservoir modeling if a
reliable set of horizons is provided; however,
in seismic reservoir characterization, the elastic
contrasts at the top and at the bottom of the re-
servoir have a key role in seismic interpretation
and inversion. The introduction of the probability
of seismic facies, even with a low resolution, al-
lows us to account for the nonstationarity obser-
vable in the vertical stratigraphy. Moreover, we
observed in the proposed real-field application
that the integration of the secondary probability
information reduces the number of iterations by a
factor of five (assuming τ3 ¼ 0.5). We point out
that secondary information could be integrated in
different ways. In addition to the Tau model used

Figure 17. Inversion results at well three (left plots) and well five (right plots) locations.
We compare the actual classification with the optimized model obtained by stochastic
inversion (shale in green, silty-sand in brown, stiff sand in light brown, and soft sand
in yellow).

Figure 16. (Top) Convergence plot of stochastic inversion results
(single run) with and without low-frequency information (blue
and red symbols, respectively) as a function of iteration number.
(Bottom) Boxplots of 25 runs consisting of 50 iterations with and
without low-frequency information (left and right, respectively).
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in our research, we could include this additional
probability data in sequential simulations by
using cokriging or Bayesian updating. The sec-
ondary information could be derived from differ-
ent sources of information, such as full waveform
inversion, AVO attributes, or EM methods.
Nonstationarity also is visible in petrophysical

and elastic properties and it can be recognized by
the presence of trends as a function of depth. To
overcome this issue, we introduced in the real-
case application a deterministic trend of porosity
and elastic properties to integrate/correct the
rock-physics model which does not explicitly
account for depth-dependency. The trend obser-
vable in porosity could be due to different me-
chanisms and also to changes in lithology; for
example, we suspect that the layer of shale at
the bottom of the reservoir has a different miner-
alogy than the overcap clay, even though the
amount of clay recognized by gamma ray log
is approximately the same. In general, the depth
trend is not linear (see Rimstad and Omre, 2010)
and several models are available, but in a
relatively small depth interval, it can be approxi-
mated by a linear regression.
We observe that, in the forward modeling,

we used a convolutional model, which is a Born

Figure 19. Inversion results along the 2D section shown in Figure 18. On the left, we show the optimized model of reservoir facies (top left),
porosity (mid left), and P-wave velocity (bottom left) obtained by stochastic inversion. On the right, we show the corresponding synthetic
seismic sections, near (top right) and far (top left) and the maximum a posteriori (MAP) of seismic facies probability (converted in depth and
mapped in the geocellular grid) used as secondary information in the Tau model and obtained by multistep inversion (shale in green, silty-sand
in brown, stiff sand in light brown, and soft sand in yellow).

Figure 18. 2D seismic section passing through wells two and three: (top) near angle stack
corresponding to 8°; (bottom) far angle stack corresponding to 26°. The black line repre-
sents the horizon, in time domain, corresponding to the interpreted top of the reservoir.
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single scattering approximation of the first order. However, other
techniques could be used such as the reflectivity methods (Kennett
algorithm) or 2D Born filtering. Similarly, different rock-physics
models could be introduced to link elastic and petrophysical
properties.
A limitation of this methodology is the presence of tuneable para-

meters, such as the Tau model exponents, variogram parameters,
and the optimization tolerance. The determination of the Tau-model
weights is still a subject of research, and a methodology to quanti-
tatively express the data-dependency or the dependency of the prob-
abilistic information, through the Tau-model exponents, is still
missing. Especially when redundant information is incorporated
in the Tau-model, it is recommended to perform a preliminary sen-
sitivity analysis on the parameters of the Tau model, possibly at the
well location where a facies classification is generally provided by
formation evaluation studies. In our study, we used τ1 ¼ τ2 ¼ 1 and
τ3 ¼ 0.5 after some synthetic tests performed at the well location to
investigate the effect of the Tau model parameters, but the final
choice is partially a subjective decision. The optimization tolerance
T significantly influences the variability of the set of models of mul-
tiple realizations; the smaller the tolerance, the smaller the variabil-
ity within the set of models obtained from different runs. This
choice is related to how well we want to match the data. This para-
meter depends on several conditions related to the seismic data set
of the reservoir study and it should be assessed by trial and error. A
similar conclusion can be drawn for variogram parameters. In this
case, an assessment of the parameters is harder, especially for the
correlation ranges in the lateral directions, due to the lack of multi-
ple wells distributed spatially. We have seen that, in the 1D applica-
tion, the key is to select the appropriate parameters to reconcile the
expected vertical variogram and the match with real seismic data,
but this assessment cannot be done in a 2D or 3D application unless
a very large number of wells are available. The assumptions related
to the choice of correlation ranges and anisotropic parameters of the
variogram model are crucial; in real reservoir studies, this choice
only can rely on prior geologic information of the field or nearby
fields. We observed that solutions are better, with finer scale fea-
tures, when the variogram range is underestimated. As pointed
out by an anonymous reviewer, this behavior may be quite general.
By giving a short range, we specify a prior information outside the
seismic bandwidth and the inversion process can adapt better the
solution to the specified prior (i.e., it has more freedom to arrange
the thin layers in a way that gives a good seismic response). On the
contrary, if we specified a long range, the prior may be less com-
plementary to the seismic frequency content. In the case of a wrong
prior (too-large thickness linked to an overestimation of the ranges),
it may be then more difficult for the inversion algorithm to adapt the
(thick) layers to give the assigned seismic response. Seismic data
could be used to estimate these properties, but the lateral continuity
of seismic is generally affected by the migration operator applied to
data, which could lead to an overestimation of the lateral ranges of
the variograms.
One possible future development is to use a multiparameter ap-

proach in the probability perturbation method (MP-PPM), where we
optimize more than one parameter simultaneously. One particular
property that could be made stochastic and perturbed in this manner
is the facies proportion, especially when few wells are available in
the field.

CONCLUSION

We presented a new methodology for facies and reservoir proper-
ties modeling that combines traditional geophysical models, such as
rock-physics and seismic forward modeling, with geostatistical
methods. The proposed approach is a stochastic optimization based
on the probability perturbation method and Tau model. The use of
sequential simulations allows us to generate fine-scaled models,
while the probability perturbation method guarantees that the opti-
mized model matches the real data within a fixed tolerance. The
main advantage of this technique is that it provides high-resolution
models of facies and the associated properties in a moderate amount
of computational time. The method is fast, especially if secondary
information is provided. This secondary information can be ob-
tained from seismic attributes through different techniques; if the
secondary information is not taken into account, the convergence
could be quite slow, especially in complex sequences of thin layers,
and the assumption of stationarity of geostatistical methods cannot
be satisfactorily overcome. Different probabilistic information from
different sources and at different scales can be integrated into the
methodology thanks to the use of the Tau model.
The application to the real well data shows that the methodology

can be applied to complex reservoirs with good results.
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APPENDIX A

TWO-POINT GEOSTATISTICS

SGSim is a geostatistical method that allows us to generate sev-
eral realizations of a continuous property which honor: (1) the hard
data (if any) used to condition the simulation, (2) the target distri-
bution (if the distribution of the property is not already a standard
Gaussian PDF), and (3) the variogram model which describes the
spatial continuity of the property. In SGSim, we sequentially visit
the grid cells along a random path. At each cell, we simulate a value
by sampling from a Gaussian distribution with mean equal to the
kriging estimate at that location and variance equal to the kriging
variance. Kriging estimate and variance at the given location are
computed by solving the kriging system (Goovaerts, 1997). The
procedure is repeated for all the cells in the grid. As in many prac-
tical applications, when the target distribution is not Gaussian, we
usually apply a preliminary normal score transformation, perform
the simulation, and back-transform the results at the end. Sequential
Gaussian simulation provides a higher detailed map of the simu-
lated property compared to the corresponding smoothed kriging
map. Multiple simulations are generated by changing the ran-
dom seed.
Sequential indicator simulation can be seen as a generalization of

SGSim. It is based on the concept of indicator variable, i.e., a binary
variable, which is the indicator of occurrence of an event. SISim is
generally applied to simulate discrete properties. The probability of
a certain cell assuming a certain value of a discrete property, given
the set of neighboring values, is calculated by indicator kriging. In
indicator kriging, we estimate the probability of a certain categorical
event at a given location as a weighted linear combination of the
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indicator data falling within the searching neighborhood. As in tra-
ditional kriging, the weights are obtained by solving the linear sys-
tem of kriging equations, which accounts for the indicator spatial
covariance model (Goovaerts, 1997). The methodology relies on the
result that the expected value of a binary indicator is the probability
of the corresponding categorical event occurring; kriging, as a least-
square error estimation method, allows calculating this probability.
At each generic location xn of the random path, we compute the
indicator kriging probability PIK

fk
of the generic categorical event fk:

PIK
fk
ðxnÞ ¼ πfk þ

Xn−1
i¼1

wiðiðxi; fkÞ − πfkÞ; (A-1)

where πfk is the prior probability of the categorical event fk,
fiðxi ; fkÞgi¼1; : : : ;n−1 are the indicators of the previously simulated
values at the locations xi, and wi are the kriging weights. By
computing this distribution at each location and sampling from
it, SISim allows us to perform simulations of discrete variables such
as facies or lithofluid classes.

APPENDIX B

PROBABILITY OF SEISMIC FACIES

We describe here the mathematical details of the multistep inver-
sion approach used to estimate the probability of facies at seismic
scale. For the complete mathematical description, we refer to
Grana and Della Rossa (2010). This method is a full Bayesian
approach and it allows us to propagate uncertainty from seismic
to facies domain by including various sources of uncertainty: seis-
mic inversion, scale changes, model approximations, heterogeneity,
and natural variability of the rocks in the subsurface. In the follow-
ing, we will use R for petrophysical properties (porosity, clay con-
tent, and possibly, water saturation), m for elastic properties
(impedances) at fine scale, and S for elastic properties at coarse
(seismic) scale (seismic impedances, AVO attributes, or seismic
amplitudes).
By means of statistical rock-physics models, we can estimate the

probability of petrophysical properties conditioned by elastic prop-
erties PðRjmÞ and the probability of elastic properties given the
seismically derived attributes PðmjSÞ. By combining these prob-
abilities, we obtain the posterior distribution of petrophysical prop-
erties by means of the following equation (Grana and Della Rossa
2010):

PðRjSÞ ¼
Z
Rn

PðRjmÞPðmjSÞdm. (B-1)

The likelihood function in the statistical rock-physics model
is based on the assumption of Gaussian mixture distribution
of petrophysical properties, which is a reasonable assumption
whenever petrophysical attributes describe different facies fea-
tures. If this is the case, the weights of the mixture λkðmÞ can
be interpreted as the conditional probability of facies occurrence.
Mathematically, the rock-physics likelihood function can be
expressed as

PðRjmÞ ¼
XNF

k¼1

λkðmÞNðR;μk
Rjm;Σ

k
RjmÞ; (B-2)

where NF is the number of facies, and μk
Rjm and Σk

Rjm are the con-
ditional means and the covariance matrices of the Gaussian mix-
ture components, respectively.
The methodology is then extended to the discrete domain to

estimate facies probabilities based on seismic data or seismically
derived attributes. The posterior probability of lithofacies is com-
puted as

P�ðFjSÞ ¼
Z
Rm

PðFjRÞPðRjSÞdR

¼
Z Z

Rmþn
PðFjRÞPðRjmÞPðmjSÞdRdm; (B-3)

where the probability PðRjSÞ is obtained by means of equation B-1
and the rock-physics likelihood PðFjRÞ is assumed to be indepen-
dent of seismic and is calibrated using well logs: petrophysical
curves and log facies classification. The final results of this method
are the probability volumes P�ðFjSÞ of seismic lithofacies. In the
stochastic inversion, the probability P�ðFjSÞ is integrated as an ad-
ditional information in the Tau model.
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