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Abstract
Understanding the near-surface structure of the Earth requires accurate prediction of
physical properties of the subsurface, such as velocity estimated from tomographic
inversion of seismic refraction data. The predicted velocity values are often uncertain
due to epistemic uncertainty in the inversion process (i.e., imperfectly known underly-
ing physics) and aleatoric variability in the data (i.e., inherent noise in observations).
Although seismic refraction is widely used in near-surface applications, the associated
uncertainty is rarely quantified and presented alongside the inverted velocity tomo-
grams. In this study, the effect of epistemic uncertainty due to local variability in the
initial model and aleatoric variability due to first-arrival picking error on the velocity
prediction uncertainty are investigated. A stochastic framework is implemented based
on a statistical approach where multiple realizations of stochastically perturbed initial
models and travel time picks are generated and the uncertainty in the predicted velocity
models is quantified. The two sources of uncertainty are first studied independently
and then the combined effect is investigated. The results show that both sources affect
the posterior uncertainty, but the uncertainty in the initial model has a greater effect
than picking error on the uncertainty of the posterior velocity model. In addition, joint
analysis of both sources of uncertainty shows that the uncertainty in the invertedmodel
depends on predicted velocity values, depths, velocity gradients and ray coverages.
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1 Introduction

The top tens-of-meters below the Earth’s surface play a central role in the processes
that sustain life on Earth (Anderson et al. 2005; Brantley et al. 2007; Leopold et al.
2013; Moravec et al. 2020; Riebe et al. 2017). For example, subsurface weathering
opens pore spaces and breaks down minerals, which facilitates storage and through-
flow of groundwater and soil nutrients (White et al. 2019; Hahm et al. 2019; Bales
and Dietrich 2020; McCormick et al. 2021; Callahan et al. 2022). Because of the high
heterogeneity in the near-surface, understanding the controls on hydrological dynam-
ics and subsurface structure often relies on estimating material properties (Knight and
Endres 2005; Moysey et al. 2005; Singha and Moysey 2006; Robinson et al. 2008)
such as porosity and saprolite thickness (Holbrook et al. 2014; Prakoso et al. 2018;
Gase et al. 2018; Flinchum et al. 2018a, 2022; Hayes et al. 2019; Callahan et al. 2020;
Gu et al. 2020; Grana et al. 2022) and depth of the bedrock (St. Clair et al. 2015;
Flinchum et al. 2018b; Rempe and Dietrich 2018; Holbrook et al. 2019; Ackerer et al.
2020). Well-logging (Holbrook et al. 2019) and core sampling (Hayes et al. 2019;
Riebe et al. 2021) are often used to provide direct measurements of subsurface rock
properties as a function of depth with increased accuracy and resolution. However,
these direct measurements are sparsely sampled at a limited number of locationswhere
boreholes are available. Instead, near-surface geophysical imaging, for example seis-
mic refraction tomography, is an effective technique for providing spatially continuous
imaging of the subsurface and is more representative of the near-surface structure at
a larger scale than direct digging or boring (Befus et al. 2011; Parsekian et al. 2015).
While shallow seismic refraction methods have been widely used, investigation of
uncertainties of these datasets is limited (e.g., Holbrook et al. 2014; Parsekian et al.
2021; Marciniak et al. 2019). In these cases, the calculated uncertainties are used to
illustrate the accuracy of the velocity model, but the effect of the different sources of
error on the calculated uncertainties is not addressed. To make reliable predictions of
subsurface parameters based on interpretation of seismic velocity, uncertainty in the
inverted seismic velocity tomogram needs to be quantified. This study focuses on the
uncertainty effects of two factors on the inverted seismic velocity tomogram: local
variations in the initial model used for inversion and errors in the travel time picking
process.

In geophysical inverse problems, several methods are developed to quantify the
uncertainty of the model variables of interest based on the uncertainty in the data
and the uncertainty in the physical relations between model and data (Borcherdt and
Healy 1968; Tarantola 2005; Aster et al. 2018). For example, bootstrap resampling
(Efron 1979, 1982) has been used to quantify the variability in inverse solutions for
various geophysical methods (Rawlinson et al. 2014; Schnaidt and Heinson 2015).
Bootstrapping is based on randomly resampling a population of smaller size than
the original dataset, inverting the resampled population, creating multiple solutions,
and computing the statistical properties of interest on the ensemble of inverted mod-
els. Alternatively, probabilistic approaches such as Bayesian methods have also been
proposed (Tarantola 2005). For example, Gouveia and Scales (1998) used Bayesian
statistics to combine a probability distribution based on a priori information and a like-
lihood function into the posterior distribution of the model variable, which provides a
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quantification of the model uncertainty. As the physical relations between model and
data are non-linear and the posterior distribution is generally represented by a complex
probability density function, stochastic methods such as Markov chain Monte Carlo
algorithms are adopted. In these methods, a proposed model is randomly sampled and
accepted or rejected based on data fit, and the posterior distribution is estimated from
the ensemble of accepted models whose variance represents the uncertainty in the
ensemble (Liu and Stock 1993; Chen et al. 2010; Huang et al. 2021).

Sources of uncertainty in the tomographic inversion of shallow seismic refraction
data include aleatoric uncertainty that is associated with randomness in the measured
data and epistemic uncertainty that is related to lack of prior knowledge of the physi-
cal model (Palmer 2012). With respect to the latter, Palmer (2012) first proposed the
hypothesis that minimizing the epistemic uncertainty with an accurate initial model is
more effective thanminimizing data error for shallow seismic refraction data. Because
of the non-uniqueness of the solution of tomographic inverse problems, building phys-
ically plausible initial models is crucial. Indeed, without a physically plausible initial
model, many inversion algorithms might fail (Chen and Zelt 2016; Cai and Zelt 2022).
In other studies, uncertainty in the inverted seismic result was investigated by study-
ing the sensitivity of using a range of velocity gradients to update the initial model
(Holbrook et al. 2014).

Aleatoric uncertainty in seismic refraction data often arises from measurement
acquisition and data processing and manipulation (Rawlinson et al. 2014). Generally,
measurement errors decrease signal to noise ratio and propagate into data process-
ing error (e.g., arrival time picking). Dangeard et al. (2018) proposed a method to
estimate picking error for shallow seismic refraction data by repeating the waveform
picking multiple times and found median picking uncertainties were less than 1%.
Uncertainty in travel time data is frequently quantified using the reciprocity principle
(DeHoop 1966), which states that reciprocal travel time recordings, where the source
and receiver positions are interchanged, are expected to be identical in viscoelastic
media. Therefore, themismatch for reciprocal data with respect to the identity function
approximates the uncertainty in the travel time data. However, in most seismic refrac-
tion surveys, it is impractical to generate a seismic source at every sensor location to
obtain a complete set of reciprocal data. Hence, in cases where reciprocal traces are
missing, interpolation is used or a constant uncertainty equal to the root-mean-squared
amplitude of all the computable reciprocal errors is used (Zelt and Chen 2016; Cai
and Zelt 2022). Alternatively, statistical models based on least-squares optimization
have been used to quantify uncertainty in travel time data (Steinhart and Meyer 1961).
However, it has not been shown in previous studies how data uncertainty affects the
uncertainty in the inverted velocity model.

In this study, a linear velocity trend is assumed in the initial model between the
surface and bedrock (following Holbrook et al. 2014); however, lateral variability in
the initial model is introduced to study the effect on the inverted models. The uncer-
tainty in the velocity model is quantified, and the effect of the picking uncertainty is
investigated using a stochastic framework. The objectives herein are as follows: (i) to
demonstrate a stochastic approach to quantify the uncertainty in the inverted veloc-
ity model, and (ii) to investigate the variability in velocity model predictions due to
different sources of error. This work addresses the open scientific question: how do
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input errors (i.e., uncertainty in the initial model and in the data) drive uncertainty
in the inverted tomographic velocity models? The methodology is demonstrated on a
field-measured seismic refraction dataset from the Laramie Range, Wyoming, USA.
The structure of the paper is as follows: The Methods section presents the field data
acquisition, reviews the tomographic inversion, and defines a stochastic framework
of perturbing the initial model and data for quantification of the uncertainty in the
posterior velocity model. The Application section applies the proposed methodology
to seismic refraction field data to study the effect of increasing variability in inversion
inputs on the inverted velocity models, and the Discussion section presents advan-
tages and limitations of the proposed method and broader implications of uncertainty
quantification in seismic inversion for near-surface geophysical studies.

2 Methods

This section describes field data acquisition and inversion. Inversion results are studied
to quantify the variability in model predictions that depends on the uncertainty in
measured data and initial model assumptions.

2.1 Field Data Acquisition

Seismic refraction is a geophysical technique that measures the travel times of active-
source seismic waves propagating in the subsurface using receivers. The receivers
(i.e., geophones) record the amplitudes and arrival times of the refracted signal turned
back towards the surface due to contrasts in density and bulk modulus. In this work,
the focus is on first arrivals recorded in seismograms.

Seismic refraction datasets were collected along two transects near Pilot Peak
(PP) and two transects near Government Gulch (GG), both in the Laramie Range,
Wyoming, USA, in July 2022 (Fig. 1a). The geological substrate is a layered sedimen-
tary sequence including theCasper Formation, which comprises permeable sandstones
and less permeable interbedded limestones, resting on top of Precambrian crystalline
rocks (Huntoon and Lundy 1979). Two intersecting 110-m-long transects from each
site that run approximately north–south (PP8 and GG3) and east–west (PP10 and
GG4) were selected for this study (Fig. 1b, c). To collect seismic refraction data, two
24-channel Geometrics Geode systems with 48 10-Hz vertical component geophones
at 2-m spacing were used. The seismic energy was generated by striking a 5.4 kg
sledgehammer on a 20 cm × 20 cm × 1 cm steel plate at 10-m intervals along each
transect, with eight stacks at each shot location. Relative elevation along each transect
was obtained using hand sight level survey at 2-m spacing.

Seismic data were picked using the Geogiga Seismic Pro DW Tomo module
(Geogiga Software, Calgary, Canada). First-arrival travel times were manually picked
by the same operator for every trace in the waveform data. A few geophone channels
suffered from low quality recording; hence, the associated traces were discarded for
visualization purposes (Fig. 2). No band-pass filter was used before or during the
picking process.
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Fig. 1 Field site at Pilot Peak (PP) and Government Gulch (GG) near Laramie, Wyoming (a). Seismic
refraction transects PP8 and PP10 at Pilot Peak (b), GG3 and GG4 at Government Gulch (c)

Fig. 2 Normalized seismic waveform data for a seismic source location at 50 m for PP8 (a), PP10 (b), GG3
(c) and GG4 (d) (first-arrival picks are shown as black crosses), and two seismic traces (e, f) extracted from
PP10 data at 80 m and from GG3 data at 8 m, respectively, with first-arrival picks shown in blue
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2.2 Tomographic Inversion

First-arrival picks were tomographically inverted to obtain two-dimensional images of
compressional wave velocities (e.g., P-wave velocities) in the subsurface. Travel-time
tomography inversion is an underdetermined problem where the number of unknowns
is larger than the number of measurements (Tarantola 2005). Therefore, the solution
is non-unique. For the data presented in this study, the inversion was done using the
Python Geophysical Inversion Modeling Library (PyGIMLi) (Rücker et al. 2017).

The seismic tomographic problem can be written as a function f : RM → R
N that

approximates the physical relation between the velocity model m (vector of length
M) and picked travel time data d (vector of length N ) as

d = f (m) + ε, (1)

with measurement error ε (vector of length N ). Hence, the inverse problem aims at
determining the velocity model m̂ that minimizes the misfit between data predictions
and data measurements

m̂ = argmin f (m) − d. (2)

The solution to the tomographic inverse problem is generally computed as an opti-
mization process where an initial model is proposed, and it is updated to minimize the
mismatch of the measured data (travel times) and model predictions. The optimization
is performed using deterministic or stochastic methods. The inversion framework in
PyGIMLi is based on a deterministic Gauss–Newton scheme that minimizes an objec-
tive function g(m) that contains the data misfit and a regularization term (Rücker et al.
2017)

g(m) = ‖Wd( f (m) − d)‖22 + λ‖Wm(m − m0)‖22, (3)

where d (M ×1) is the vector of travel times, with N being equal to the product of the
number of sources times the number of receivers, m (M × 1) is the velocity model of
interest, with M being the number of locations with unknown velocity values, and m0
(M × 1) is the initial velocity model. The matrix Wd (N × N ) is the data weighting
matrix that contains data errors used to weight travel time picks in the inversion such
that travel times with the smallest errors are given the most weight. Flinchum et al.
(2022) assigned errors to travel time picks using a linear equation as a function of
offset distance from the source. Alternatively, a constant error value is assigned to
data so that all travel times are given with equal weight. The matrix Wm (M × M) is
the model constraint matrix, also known as a first-order smoothness operator, whereas
the dimensionless factor λ is a regularization term, also referred to as smoothing scalar.

The function f calculates travel times of the subsurface model with velocity model
m using Dijkstra’s shortest path algorithm (Dijkstra 1959). The algorithm uses an
iterative method to find the shortest path between a source node and a set of other
nodes, for which it updates the shortest distance between each node to the source node
until all nodes are added to the path. The geometric domain where the velocity model
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is defined is a triangular mesh is used to improve numerical accuracy and minimize
mesh interpolation errors (Rücker et al. 2017).

The following inversion settings are used in this study: a value of 200 is used
as the smoothing scalar λ for the regularization term and a maximum number of
15 iterations is allowed for the inversion to converge. Inversion is also constrained
by limiting the velocity range to be between 300 and 6,000 m/s to avoid predicting
physically implausible velocity values. The depth of investigation (DOI) is defined as
the maximum depth where the inversion results are considered reliable, and it depends
on the acquisition geometry and on the actual velocity structure of the subsurface. The
DOI is bounded by the deepest calculated ray path on the velocity tomogram.

2.3 Uncertainty Quantification

To investigate the uncertainty in the inverted velocity model, a Monte Carlo approach
is adopted, where the inversion is run multiple times by minimizing the objective
function g(m) with different initial conditions and data errors. The initial model is
created by defining a top layer with low velocity that represents soil with high porosity
and a bottom layer with higher velocity that represents local bedrock. The velocity
structure is linearly interpolated following the surface topography. The maximum
depth of the parametric domain is set as 60 m based on the analysis of the modeled
ray path geometry. The number of equidistant nodes between two geophones is set to
3. The maximum parametric size for triangles is set to 3 m2.

Since the model is defined on a triangular grid, the application of traditional geo-
statistics methods to stochastically generate the set of initial models is challenging.
For this reason, a deterministic initial model is first defined according to a linear depth
trend of velocity and a spatially correlated random noise is added to the model. To
generate a set of spatially correlated models, spatially uncorrelated random noise is
added to a subset of randomly selected locations within the grid and then the values
are interpolated to obtain locally continuous models. The random noise is drawn from
a uniform distribution with a pre-defined variance. The local continuity of the initial
models depends on the number of subsampled points (i.e., subsample size) and the
noise variance. If the subsample size is too large, the stochastic models show abrupt
local variations, whereas if the subsample size is too small, the overall variability is
relatively limited. A similar argument can be made for the variance of the noise. After
performing a sensitivity analysis on the effect of variation in subsample size, a sub-
sample size of 500 (approximately 20% of the total number of points in the grid) was
chosen. According to a Monte Carlo approach, the inversion was run n times with an
ensemble of n stochastically perturbed initial models. The solution is an ensemble of
n realizations whose mean represents the most likely P-wave velocity model, and the
standard deviation is interpreted as the uncertainty of the P-wave velocity model due
to the uncertainty in the prior knowledge and the data processing error. The mean μm

and standard deviation σm are computed from the posterior ensemble of realizations
at each point of the model grid.

The uncertainty due to data picking errors is investigated by simulating random
errors to be added to the picked travel times. For this study, a random error with a
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Gaussian distribution N
(
μe, σ

2
e

)
is assumed with mean μe equal to zero. Because the

signal-to-noise ratio of the data generally decreases with distance from the seismic
source location as the first-arrival times increase, the standard deviation of the error is
assumed to be a function of first-arrival travel times. Therefore, the standard deviation
is locally variable and is defined such that the half-length of the 0.95 confidence internal
(1.96σe) is equal to a fraction of the travel time εtp, with ε < 1. Consequently, the
standard deviation of picking error σ is assumed to be (ε/1.96)tp and the perturbed
travel time t∗p is

t∗p = tp + z, with z ∼ N
(
0, σ 2

e

)
, (4)

where tp denotes the picked travel time. The inversion is run n times with n perturbed
travel time datasets, and the solution is an ensemble of n realizations used to predict
the mean μm and standard deviation σm that represent the most likely P-wave velocity
model and uncertainty in the P-wave velocity model.

It is certainly difficult to correctly define the uncertainty in the initial conditions
and data; however, based on literature data and direct measurements, it is possible
to define plausible ranges for their variability. In this study, three different cases are
considered for the uncertainty in the initial model, representing the low-uncertainty,
mid-uncertainty and high-uncertainty cases to study the effect on the posterior model
mean and standard deviation. The uncertainty in the initial model depends on the
standard deviation of the local errors that control the variability in the set of initial
models. Similarly, three different cases are considered for the uncertainty in the data
picks, representing the low-uncertainty, mid-uncertainty and high-uncertainty cases.
The uncertainty in the picking errors depends on the standard deviation of the data
error that controls the variability in the travel times. The two sources of uncertainty
for the velocity model are first studied independently; in other words, the uncertainty
due to the variability in the initial model is investigated assuming no picking error
in the data, and the uncertainty due to the picking error is investigated with the same
initial model. Then, the uncertainty in the velocity model due to the initial model and
the picking error is studied by simultaneously perturbing the initial model and travel
time data.

3 Application

Seismic data are first inverted using the standard pyGLIMli inversion for all four
transects; then the stochastic approach is applied to investigate the variability in the
P-wave velocity model due to the uncertainty in the initial model and the picking
error. The result of the traditional inversion is a single P-wave velocity model for each
transect. For plotting the inverted velocity tomograms, perceptually uniformcolormaps
(Crameri 2021) are used. Figure 3b shows the inverted P-wave velocity tomogram for
transect PP8 with a root-mean-squared-error (RMSE) misfit of 1.27 ms after four
iterations. Transect PP8 is a 110-m-long line that starts at a north flat ridgetop, drops
into a topographic minimum at approximately 30 m on a hillslope, then rises up to

123



Mathematical Geosciences

Fig. 3 Initial model (a) and inversion result for PP8: P-wave velocity model (b), calculated vertical velocity
gradient and ray path (c) (ray path thicknesses are used for visualization). Black dots represent geophone
locations along the hillslope

a south flat ridgetop. The inverted model is only plotted above the DOI based on the
deepest ray path (Fig. 3b). The vertical velocity gradient is calculated in the model,
and darker colors indicate areas with a sharp vertical increase in velocity (Fig. 3c).
Regions with high vertical velocity gradient values are commonly associated with
lithological boundaries. In Fig. 3b, two distinguishable layers with different velocity
values and thicknesses are identified: (i) a low-velocity layer (Vp < 1,000 m/s) that is
interpreted as unconsolidated rocks, and (ii) a high-velocity layer (Vp > 3,000 m/s)
that is interpreted as consolidated rocks. This velocity contrast may be associated
with porosity and lithology changes (Flinchum et al. 2018b). The calculated vertical
velocity gradient is the highest under the topographic low point at 30 m and highlights
the transition zone of low-velocity layer to high-velocity layer (Fig. 3c).

3.1 Uncertainty in the Initial Model

In this section, the uncertainty due to the initial velocity model is investigated. A set
of 100 realizations of initial velocity model is generated and for each initial model the
inversion is run. The result is a set of 100 posterior velocity models conditioned on the
seismic data from which the velocity uncertainty can be estimated. The mean of 100
realizations of initial velocity model is calculated for the three cases of uncertainties
(Fig. 4a–c). One realization is randomly selected to illustrate the local perturbation
added to the initial model (Fig. 4d–f). The standard deviation that represents the
variability in the prior ensemble of 100 realizations for the three cases of uncertainties
is calculated (Fig. 4g–i). For the low-uncertainty case scenario, the feature of a smooth
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Fig. 4 Initial model of P-wave velocity for PP8: mean of 100 realizations (a–c), one randomly selected
realization (d–f), and standard deviation of 100 realizations (g–i) obtained by perturbing the initial model
at low-, mid- and high-uncertainty cases

and linear gradient initial model is still preserved (Fig. 4a, d). At mid-uncertainty and
high-uncertainty case scenarios, structure of the initial model becomes more variable
and less smooth (Fig. 4b, c, e, f). As a result of subsampling and interpolation, the
perturbed model is still locally continuous (Fig. 4g–i).

Using aMonteCarlo approach, the inversion is run 100 timeswith the stochastically
perturbed initialmodels. Themean of the ensemble of posterior realizations is assumed
to be the most likely P-wave velocity model (Fig. 5a–c). By comparing to the result
obtained using a deterministic approach (Fig. 3b), it is clear that the most likely model
preserves similar structural patterns of velocity across all three cases of uncertainties.
However, for a randomly selected realization, the posterior velocity model appears
to be less spatially continuous as variability in the set of initial models increases
(Fig. 5d–f). The standard deviation of posterior velocity models decreases with respect
of the initial standard deviation in each case. However, the variability in the posterior
ensemble of realizations increases as variability in the set of initial models increases
from the low-uncertainty to the high-uncertainty case (Fig. 5g–i).

To quantitatively illustrate the effect of initial model uncertainty on the posterior
model variability, box plots for the initial model ensemble and the posterior model
ensemble are shown (Fig. 6). For the three cases of uncertainties, the inversion con-
verges to approximately the same distribution of the mean of the posterior ensemble
of realizations (Fig. 6b), whereas the standard deviation shows that the median and
the interquartile range increase as the variability in the set of initial models increases
(Fig. 6d).
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Fig. 5 Posterior model of P-wave velocity for PP8: mean of 100 realizations (a–c), one randomly selected
realization (d–f), and standard deviation of 100 realizations (g–i) obtained by perturbing the initial model
at low-, mid- and high-uncertainty cases

3.2 Uncertainty in the Data

In this section, the uncertainty in the picking arrival times is studied, by defining
the picking error as a fraction of the measured travel time of the interpreted first
arrival. Three different cases representing the low-uncertainty, mid-uncertainty and
high-uncertainty cases are investigated to stochastically perturb the travel time data.
Reciprocal data of original picks (Fig. 7a) and reciprocal data of the ensemble of 100
realizations of perturbed travel time picks at the mid-uncertainty case (Fig. 7b, c)
illustrate the variability in the perturbed data and shows that the perturbed data are
still within a physically plausible range. Picking errors for travel time picks at each
trace are shown with error bars (Fig. 8a–c). For each case of uncertainty, stochasti-
cally perturbed travel time data are used as input for the inversion and the posterior
P-wave velocity model is obtained. Using a Monte Carlo approach, inversion is run
100 times using 100 stochastically perturbed travel time data points. The mean of the
ensemble of posterior realizations represents the most likely P-wave velocity model
(Fig. 9a–c). The mean for the three cases of uncertainty shows similar velocity struc-
ture. One realization is randomly selected to show the effect of picking error on the
inverted model (Fig. 9d–f). The standard deviation of posterior velocity models shows
that variability in the posterior ensemble of realizations increases as picking error
increases (Fig. 9g–i). For the three cases of uncertainty, the inversion converges to
the same distribution of the mean of the posterior ensemble of realizations (Fig. 8d),
whereas the median and the interquartile range of the standard deviation increase as
picking error increases (Fig. 8e). In other words, even though the standard deviation
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Fig. 6 Box plots of mean (a) and standard deviation (c) for initial model and box plots of mean (b) and
standard deviation (d) for posterior model obtained by perturbing the initial model

of the posterior velocity model increases, the inversion results converge to a consistent
posterior velocity despite the increasing magnitude of the error.

To compare the independent effect of initial model uncertainty and picking error
on the variability in the posterior ensemble, differences in the ensemble mean within
three cases of uncertainties are calculated from previously shown results obtained by
perturbing the initial model (Fig. 5a–c) and picking data (Fig. 9a–c). The calculated
differences in the ensemble mean of the low- and mid-uncertainty scenarios (Fig. 10a,
c) and of the low- and high-uncertainty scenarios (Fig. 10b, d) show that the posterior
ensemblemean becomesmore locally variable as initial model uncertainty and picking
error increase and that the difference in the ensemble mean obtained in case of initial
model uncertainty (Fig. 10a, b) is generally higher than difference obtained in case
of picking error (Fig. 10c, d). Overall, the conclusions herein are as follows: (i) both
initial model uncertainty and picking error drive uncertainty in the posterior velocity
model; (ii) initial model uncertainty has a larger effect on the variability in the posterior
model than picking error.
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Fig. 7 Reciprocal travel times of themeasured dataset at 25 available receiver locations (a). Reciprocal travel
times of the perturbed travel time data for the ensemble of 100 realizations at the 25 receiver locations (2,500
values in total) where each color represents a different realization (b). Histogram of the perturbed travel
times where each color represents a different realization (c)

3.3 Uncertainty in Both Initial Model and Data

In the previous sections, the uncertainty in the initialmodel and in the travel time data is
investigated independently. In this section, the effect of the two sources of uncertainty
on the final velocity model is studied by simultaneously perturbing both initial model
and travel time data and running the inversion with the perturbed initial model and
perturbed travel time data. The method is applied to all four transects for which initial
model and picked arrival times for each transect are stochastically perturbed at the
mid-uncertainty case. For each transect, 100 realizations of perturbed initial model
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Fig. 8 Perturbed travel time picks with 95% CI (a–c) at low-, mid- and high-uncertainty cases for a source
location at 50 m for PP8. Box plots for posterior model of P-wave velocity: mean (d) and standard deviation
(e) of 100 realizations obtained by perturbing travel time picks

and data are generated and used as inputs for inversion, then the posterior ensemble of
the inverted velocity models is obtained. The mean of the posterior P-wave velocity
ensemble (Fig. 11), the mean of the posterior vertical velocity gradient ensemble
(Fig. 12) and the standard deviation of the posterior P-wave velocity ensemble (Fig. 13)
are studied.

The mean of the posterior ensemble of velocity models for PP8 (Fig. 11a) preserves
similar structural patterns in velocity compared to the inverted model using a deter-
ministic approach (Fig. 3b). Using the results obtained for PP8, several features can be
identified. Below the topographic minimum at about 24 m in the horizontal distance,
an approximately 3-m-thick layer (Vp < 1,000m/s) overlies a much thicker layer (Vp >
3,000 m/s). The low-velocity layer becomes thicker as distance from the topographic
minimum increases; hence, depth to the high-velocity layer increases below the hill-
slope at higher relative elevations (Fig. 11a). Below the topographic minimum, the
value of the vertical velocity gradient (∇Vp ~ 600 m/s/m) is the highest across the
profile (Fig. 12a). Likewise, high vertical velocity gradient values generally mark the
transition zone from low-velocity layer to high-velocity layer. The highest standard
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Fig. 9 Posterior model of P-wave velocity for PP8: mean of 100 realizations (a–c), one randomly selected
realization (d–f), and standard deviation of 100 realizations (g–i) obtained by perturbing travel time picks
at low-, mid- and high-uncertainty cases

Fig. 10 Posterior model mean difference in low- and mid-uncertainty cases and in low- and high-uncertainty
cases obtained by perturbing both the initial model (a, b) and travel time picks (c, d) for PP8
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Fig. 11 Posterior model of P-wave velocity: mean of 100 realizations for PP8 (a), PP10 (b), GG3 (c) and
GG4 (d) obtained by perturbing both the initial model and travel time data at mid-uncertainty case

Fig. 12 Posterior model of P-wave vertical velocity gradient: mean of 100 realizations for PP8 (a), PP10 (b),
GG3 (c) and GG4 (d) obtained by perturbing both the initial model and travel time data at mid-uncertainty
case
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Fig. 13 Posterior model of P-wave velocity: standard deviation of 100 realizations for PP8 (a), PP10 (b),
GG3 (c) and GG4 (d) obtained by perturbing both the initial model and travel time data at mid-uncertainty
case

deviation (σVp ~ 300 m/s) is below the topographic minimum, which corresponds
to the structural pattern identified in the vertical velocity gradient that highlights the
transition zone of low-velocity layer and high-velocity layer (Fig. 13a).

Unlike PP8 that features a stronger topographic relief, the other three transects
(PP10, GG3 and GG4) features less variation in topography. In PP10, the thickness of
the low-velocity layer (Vp < 1,000 m/s) is approximately constant along the transect
and is generally less than 5 m (Fig. 11b). The high-velocity layer (Vp > 3,000 m/s)
underneath the thinner low-velocity layer is generally thicker than the high-velocity
layer of PP8. The interface between the low-velocity layer and the high-velocity layer
is highlighted by the vertical velocity gradients with ∇Vp > 300 m/s/m (Fig. 12b).
The standard deviation increases beneath the transition zone of low-velocity layer and
high-velocity layer (Fig. 13b). Although study sites at Pilot Peak and Government
Gulch share similar sedimentary rock types, the underlying layer thicknesses, local
lithology and porosity variations are different. In GG3, a high-velocity structure (Vp

~ 2,500 m/s) is observed near the end of line at about 2 m below the surface. A high-
velocity zone with velocity (Vp ~ 3,000 m/s) is at about 20 m below the surface at the
center of the line (Fig. 11c). The high-velocity structure observed near the end of line
is related to the high vertical velocity gradient values (∇Vp > 300 m/s/m) (Fig. 12c).
The standard deviation values are related to the velocity values (Fig. 13c). In GG4, the
low-velocity layer (Vp < 1,000 m/s) is much thinner compared to other profiles. The
transition zone of low-velocity layer and high-velocity layer is generally parallel to
the topography (Fig. 11d). The transition from low to high velocity is highlighted by
vertical velocity gradient with values higher than 300 m/s/m (Fig. 12d). The standard
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deviation values generally increase along the velocity transition and along the DOI
(Fig. 13d).

4 Discussion

While seismic refraction methods have become widely used in near-surface appli-
cations for estimating subsurface properties, the effects on the inverted tomographic
velocity models of the different sources of errors remain unclear. This work proposes
a stochastic method for quantifying uncertainty in the inverted velocity tomogram and
demonstrates its application to field data. More specifically, this study investigates the
effect of epistemic uncertainty in the initial model and aleatory uncertainty of the pick-
ing error on the inverted velocity models using a Monte Carlo-based approach. The
result shows that both initial model and picking error contribute to the uncertainty in
the velocity model, and that the initial model leads to larger uncertainty in the velocity
models than picking error.

Previous studies demonstrate that the use of accurate and physically plausible ini-
tial model is effective in reducing the epistemic uncertainty in the inversion (Palmer
2012; Chen and Zelt 2016; Cai and Zelt 2022). This study investigates the effect of
the uncertainty of the initial model on the predicted velocity model. By stochastically
perturbing the initial model and travel time data using a Monte Carlo approach, the
uncertainty in the predictive velocity model is quantified and the effect of the sources
of uncertainty is studied individually and jointly. The set of initial models can be
stochastically generated using geostatistical methods such as fast Fourier transform—
moving average or probability field simulations (Grana et al. 2021). However, since the
initial model is defined on a triangular grid, the application of traditional geostatistics
method is challenging when the size of the triangles varies significantly (Zaytsev et al.
2016). Instead, spatially uncorrelated random noise is added to a subset of randomly
selected locations within model grid and the values are interpolated on the full grid.
This approach allows generating a set of initial models where the variability in the
realizations depends on the standard deviation of the random noise. Preliminary tests
show that the variability in the velocity models is consistent with the velocity ranges
observed in near-surface geophysics boreholes (Flinchum et al. 2018a; Parsekian et al.
2021).

The aleatory uncertainty in the travel times is generally difficult to quantify.
Although uncertainty in seismic refraction data which arises from measurement and
processing errors can be quantified using the reciprocity principle, it often requires
interpolation for traces that lack reciprocal measurements and therefore can be biased
towards measurements with high reciprocal errors. Dangeard et al. (2018) proposed
a method for estimate picking error by repeating the data processing multiple times,
but their approach can be biased towards data being processed by the same operator
and their manual repetition method becomes challenging for datasets that cover tens
of kilometers in area. This study proposes a stochastic approach to quantify the uncer-
tainty in the inverted model due to the errors in the travel time picking based on the
assumption that picking error increases as a function of travel time. This assumption
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might fail in cases where travel times are picked with minimum ambiguity given a
high signal-to-noise ratio across the entire shot gather.

By comparing the independent effect of epistemic uncertainty due to local variabil-
ity in the initial model and aleatoric variability in the picked travel time data on the
posterior ensemble uncertainty, it is determined that epistemic uncertainty in the initial
model has a larger effect on the posterior model uncertainty than aleatory variability
in the data. This finding agrees with Palmer (2012) who demonstrates that minimiz-
ing epistemic uncertainty through the use of the most appropriate starting model is
more important than minimizing aleatory variability. Palmer (2012) used field data
imaging an ore body within a fractured volcanic and siltstone substrate in contrast to
the field data from this study that was measured on interbedded limestones and sand-
stones, suggesting that the importance of the starting model over the data errors is not
lithology-specific. In general, it is difficult to define an accurate starting model; how-
ever, this analysis shows that it is crucial to reduce the uncertainty in the initial model,
for example using direct measurements from core samples and borehole log data, to
obtain a more accurate and precise posterior model. Indeed, when a large dataset of
direct measurements is available, it is generally possible to build a more accurate ini-
tial model using geostatistical interpolation or sampling methods (Grana et al. 2021).
In these cases, the uncertainty in the initial model can be significantly reduced. Direct
measurements are particularly useful in presence of low-quality geophysical data, as
in these cases the uncertainty in the travel time data might have a larger effect on
the velocity estimate than the uncertainty in the initial model. In practice though, this
case is not very frequent due to the lack of borehole data for near-surface geophysics
and the challenges in measuring velocities on unconsolidated core samples as well
as the possibility of repeating the geophysical data acquisition in case of low-quality
measurements.

The analysis of multiple seismic lines (Figs. 11, 12, 13) provides additional insights
on the correlation between the posterior uncertainty, represented by the standard devi-
ation of the velocity model, and other properties such as predicted velocity as well
as depth (Fig. 14), ray coverage (Fig. 15) and vertical velocity gradient (Fig. 16).
Generally, for PP and GG lines, the predicted velocity increases as a function of depth
(Fig. 14), which agrees with velocity-depth models where deeper rocks are less porous
and stiffer than shallower rocks with higher velocities (Mavko et al. 2020). At shal-
lower depths where rocks are more porous, and softer and greater heterogeneity is
expected, the predicted velocity increases rapidly as a function of depth, and high
velocity gradient is observed; in contrast, at greater depths, the predicted velocity
increases gradually and low velocity gradient is observed (Fig. 16). For the GG lines,
the consolidated rock is observed to be shallow as a portion of the seismic line is almost
on bare bedrock; hence, seismic rays are turning at shallower depth, and deeper rocks
that are stiffer are not resolved. Indeed, the highest predicted velocity of GG lines (~
3,500 m/s) is smaller that of PP lines (> 4,000 m/s), where stiffer rocks are at greater
depth (Fig. 14).

Generally, for all lines, the posterior standard deviation increases as a function of
the predicted velocity (Fig. 14). The increase is observed to be linear and rapid at
shallower depths (< 5 m) for low predicted velocity values and stabilizes at some
asymptotic value at greater depths (> 5 m) for high predicted velocity values. This
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Fig. 14 Cross plot of posterior model standard deviation and mean of 100 realizations color-coded by depth
for PP8 (a), PP10 (b), GG3 (c) and GG4 (d)

Fig. 15 Cross plot of posterior model standard deviation and mean of 100 realizations color-coded by ray
coverage for PP8 (a), PP10 (b), GG3 (c) and GG4 (d)
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Fig. 16 Cross plot of posteriormodel standard deviation andmean of 100 realizations color-coded by vertical
velocity gradient for PP8 (a), PP10 (b), GG3 (c) and GG4 (d)

pattern is consistent with the evidence that high velocity gradient is observed near the
surface (Fig. 16) where high heterogeneity is present, and the predicted velocity has
more variability and therefore uncertainty increases as a function of depth (Fig. 14).
Furthermore, at greater depth where small velocity gradient is observed (Fig. 16) and
less heterogeneity in the rocks is expected, velocity for such stiffer rocks is predicted
with less local variability, and therefore the associated uncertainty in the prediction is
almost constant as the standard deviation stabilizes at some asymptotic value (Fig. 14).
Although for GG lines, standard deviation also appears to increase as a function of the
predicted velocity even at greater depth (Fig. 14c, d), it is reasonable to speculate that
this is due to insufficient ray coverage near the DOI that causes uncertainty to increase
with the predicted velocity (Fig. 15c, d). In general, for areas with high velocity
gradients, high values of standard deviation are observed (Fig. 16). For example, at
the transition from low-velocity to high-velocity layers with the predicted velocity in
the range of 700–2,000 m/s, which may indicate a transition from high-porosity soft
rocks to low-porosity stiff rocks (Flinchum et al. 2018a; Holbrook et al. 2019), the
observed standard deviation increases with the predicted velocity due to higher local
variability in the prediction (Fig. 16) andmay be attributed to the smoothing constraint
enforced in the inversion.

Overall, similar patterns of spatial variation in the obtained standard deviation are
observed among all lines; however, a bimodal trend in GG3 is observed (Figs. 14c,
15c, 16c). The bimodal trend as observed in GG3 is most likely due to large spatial
heterogeneity along the surface (Figs. 11c, 12c) that causes variation in both the
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predicted velocity values and velocity gradient values. In GG3, a zone of high velocity
and sharp velocity change is observed at X = 60 m and beyond (Figs. 11c, 12c) and
likely corresponds to the linear trend with a higher gradient (Fig. 16c), whereas the
other zone with lower velocity and no significant velocity change observed at less
than X = 60 m (Figs. 11c, 12c) likely corresponds to the linear trend with a smaller
gradient (Fig. 16c).

5 Conclusions

A stochastic methodology is presented for quantifying uncertainty in seismic tomo-
graphic inversion that arises fromepistemic uncertainty and aleatory variability in data.
By stochastically perturbing the initial model and travel time picks and generating an
ensemble of realizations using aMonte Carlo approach, the effects of epistemic uncer-
tainty and aleatory variability in data on the inverted velocity model are investigated.
By combining both sources of errors and studying the effect on the posterior model
uncertainty, some general conclusions are drawn: (i) uncertainty generally increases
rapidly as a function of the predicted velocity and depth in the near subsurface (i.e.,
high-porosity soft rocks) and becomes approximately constant in the deeper part (i.e.,
low-porosity stiff rocks); (ii) uncertainty increases in areas with insufficient ray cover-
age; (iii) uncertainty is generally higher in areas with higher values of velocity gradient
and therefore higher degree of heterogeneity (e.g., transition from high-porosity soft
rocks to low-porosity stiff rocks) and is lower in areaswith lower values of velocity gra-
dient and therefore less heterogeneity (e.g., low-porosity stiff rocks); (iv) uncertainty
might have more than one trend as a function of the predicted velocity if large lateral
heterogeneity in the subsurface is observed. As this study specifically investigates the
effect of the two sources of errors on the uncertainty of the inversion result, there are
other possible sources of errors that might drive uncertainty in the inversion result
and remain to be further investigated, for example, errors in the measured topography,
choice of regularization parameter, grid shape, and grid size. The proposed approach
can be extended to seismic refraction data collected at any field sites with variable
regional geology for the quantification of epistemic uncertainty (i.e., the inherent sen-
sitivity of inversion parameters such as the initial model) and aleatory uncertainty in
data (i.e., the variability in picking error). Furthermore, the proposed method can also
be extended to other types of geophysical data, such electric data, and to other rock
and fluid properties, such as porosity and water saturation.
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