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ABSTRACT

Seismic reservoir characterization is a subfield of geophysics
that combines seismic and rock-physics modeling with math-
ematical inverse theory to predict reservoir variables from the
measured seismic data. An open-source comprehensive model-
ing library that includes the main concepts and tools is still miss-
ing. We have developed a Python library called SeReMpy with
state-of-the-art of seismic reservoir modeling for reservoir prop-
erties characterization using seismic and rock-physics models
and Bayesian inverse theory. The most innovative component
of the library is the Bayesian seismic and rock-physics inversion
to predict the spatial distribution of petrophysical and elastic
properties from seismic data. The inversion algorithms include
Bayesian analytical solutions of the linear-Gaussian inverse

problem and Markov chain Monte Carlo (MCMC) numerical
methods for nonlinear problems. The library includes four mod-
ules: geostatistics, rock physics, facies, and inversion, as well as
several scripts with illustrative examples and applications. We
illustrate the use of the functions of the module and develop
codes for practical inversion problems using synthetic and real
data. The applications include a rock-physics model for the pre-
diction of elastic properties and facies using well-log data, a ge-
ostatistical simulation of continuous and discrete properties
using well logs, a geostatistical interpolation and simulation
of 2D maps of temperature, an elastic inversion of partial
stacked seismograms with Bayesian linearized amplitude-varia-
tion-with-offset inversion, a rock-physics inversion of partial
stacked seismograms with MCMC methods, and a 2D seismic
inversion.

INTRODUCTION

Seismic reservoir characterization aims to improve the description
of the reservoir in terms of petrophysical and elastic variables using
seismic data. In general, seismic reservoir characterization requires
the integration of multiple fields including seismology for modeling
the seismic response, rock physics for modeling the elastic response,
petrophysics for modeling the petrophysical response, geostatistics
for stochastic simulating random variables with spatial correlation,
inverse theory for predicting the model variables from the geophysi-
cal response, and Bayesian statistics for quantifying the uncertainty in
the model variables. A detailed review of seismic reservoir charac-
terization methods is given in Doyen (2007) and Grana et al. (2021).
In this paper, we focus on Bayesian methods for geophysical in-

verse problems to estimate the spatial distribution of a set of model
variables from the measured data, predict the most likely values,
and quantify the uncertainty of the properties of interest. In the

Bayesian setting, the solution of the inverse problem is the posterior
probability density function (PDF) of the model variables condi-
tioned on themeasured data (Scales and Tenorio, 2001; Ulrych et al.,
2001; Tarantola, 2005). The application of Bayesian inversion to
seismic reservoir characterization problems gained increasing atten-
tion in the past few decades. The precursive works on probabilistic
and stochastic approaches to seismic inverse problems date back to
the 1980s and include publications by Tarantola and Valette (1982),
Doyen (1988), Bortoli et al. (1993), Haas and Dubrule (1994), Mo-
segaard and Tarantola (1995), and Sen and Stoffa (1996). The
progress on seismic inversion proceeded parallel to advances in ge-
ostatistics for reservoir modeling (Journel and Huijbregts, 1978;
Deutsch and Journel, 1998; Deutsch, 2002).
Subsequent publications focus on stochastic inversion methods to

predict rock and fluid properties from seismic data (Bosch, 1999; Mu-
kerji et al., 2001; Buland and Omre, 2003; Eidsvik et al., 2004; Gun-
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ning and Glinsky, 2004; Coléou et al., 2005; Contreras et al., 2005).
Reviews of these methods are given in Doyen (2007) and Bosch et al.
(2010). Buland and Omre (2003) present an elegant and efficient ana-
lytical solution of the seismic amplitude-variation-with-offset (AVO)
inversion problem using Bayesian linear-Gaussian inverse theory.
Subsequent publications combining seismic and rock-physics
modeling with Bayesian inversion rely on the Buland and Omre for-
mulation and extend the approach to petrophysical inversion and lith-
ofluid facies classification (Larsen et al., 2006; Buland et al., 2008;
Grana and Della Rossa, 2010; Ulvmoen and Omre, 2010; Rimstad
et al., 2012; Grana, 2016, 2018; Jullum and Kolbjørnsen, 2016; Grana
et al., 2017; de Figueiredo et al., 2018; Fjeldstad and Grana, 2018).
Stochastic methods with similar probabilistic formulations have been
proposed by Connolly and Kemper (2007), González et al. (2008),
Gunning and Glinsky (2007), Spikes et al. (2008), Azevedo et al.
(2013), and Kemper and Gunning (2014). Alternatively, stochastic
methods for seismic reservoir characterization based on Monte Carlo
or Markov chain Monte Carlo (MCMC) algorithms to sample from
the posterior distribution of the variables of interest have been
presented in Mosegaard and Tarantola (1995), Sambridge and Mose-
gaard (2002), Eidsvik et al. (2004), Connolly and Hughes (2016),
Jeong et al. (2017), and de Figueiredo et al. (2019a, 2019b).
All of the previously mentioned publications include formula-

tions with various model parameterizations, algorithms, and as-
sumptions, but they all have in common the use of probabilistic
methods to improve the reservoir characterization from seismic data
and well logs. Some of the available publications include open-
source codes (Gunning and Glinsky, 2004; Hansen, 2004; Pebesma,
2004; Liu and Grana, 2019). Dedicated toolboxes are also available
for specific tasks, such as rock-physics modeling (Avseth et al.,
2010) and geostatistics (Deutsch and Journel, 1998; Remy et al.,
2009). However, a comprehensive library for seismic reservoir char-
acterization including seismic and rock-physics models, geostatis-
tical algorithms, and inversion methods is still missing. We present
here the open-source library SeReMpy, a Python library for seismic
reservoir modeling, available in the dedicated GitHub repository
(see the “Data and materials availability” section).
The SeReMpy library includes four modules for facies, geosta-

tistics, inversion, and rock-physics modeling as well as several
examples. The facies module includes methods for facies classifi-
cation (Doyen, 2007), the geostatistics module includes algorithms
for interpolation and simulation of spatially correlated random var-
iables (Deutsch, 2002), the rock-physics module includes rock-
physics models for elastic properties (Mavko et al., 2020), and
the inversion module includes the state-of-the-art of Bayesian meth-
ods for seismic reservoir characterization. In this paper, we focus on
the inversion methods. First, we review the theory of Bayesian in-
version for seismic and petrophysical characterization, we then
present all the functionalities of the library, and we finally show
several applications to seismic reservoir characterization problems.

THEORY

One of the goals of seismic reservoir characterization is to predict a
set of unknown geophysical variables of interest m from a collection
of measurements d. Measured data typically include poststack or par-
tial-stacked seismic data, whereas the geophysical variables might
include elastic properties (P- and S-wave velocity and density), pet-
rophysical properties (porosity, mineral volumes, and fluid satura-
tions), or categorical variables such as facies or lithologies.

Geophysical models are mathematical operators f∶Rnm → Rnd

that approximate the relation between the model variables m and
the data d:

d ¼ fðmÞ þ ε; (1)

where the term ε represents the error associated with the measure-
ments, nm is the number of unknown variables, and nd is the number
of measurements.
The forward operator f depends on the parameterization of the

problem and the available data, but it generally includes a seismic
model to compute the seismic response and/or a rock-physics model
to calculate the elastic response of a vertical sequence of rocks with
known petrophysical properties. The forward operator is generally
discretized due to the finite number of measurements, and it is often
simplified using linear approximations. In this case, given the mea-
surements d ¼ fdig (i ¼ 1; : : : ; nd), f is written as a matrix F of
dimensions nd × nm and equation 1 becomes a linear system of
equations:

d ¼ Fmþ ε; (2)

where m is a vector of length nm and ε is a vector of length nd.
From a Bayesian perspective, the solution of the inverse problem

is the posterior PDF of the model m, PðmjdÞ, and it can be com-
puted using the Bayes’ theorem:

PðmjdÞ ¼ PðdjmÞPðmÞ
PðdÞ ¼ 1

c
PðdjmÞPðmÞ; (3)

where PðdjmÞ is the likelihood function, PðmÞ is the prior distri-
bution, and PðdÞ is a normalizing constant (PðdÞ ¼ c).
In a statistical setting, calculating the solution of equation 1 is a

maximum likelihood estimation problem. If we assume that the
observations are independent and fiðdijmÞ represents the PDF of
the measurement di (i ¼ 1; : : : ; nd) with Gaussian noise
εi ∼N ðεi; 0; σ2i Þ, then the joint probability density of the vector
of independent observations d is

fðdjmÞ¼
Ynd
i¼1

fiðdijmÞ¼ 1

ð2πÞnd∕2Qnd
i¼1σi

Ynd
i¼1

e
−ðdi−ðFmÞiÞ2

2σ2
i : (4)

In the maximum likelihood estimation, we aim to estimate the
model m that maximizes the likelihood function in equation 4 (Tar-
antola, 2005).
In the linear-Gaussian case, the solution of the inverse problem

can be estimated analytically (Buland and Omre, 2003; Tarantola,
2005). We consider a linear operator f with matrix F. We assume
that the prior distribution of the model vector m is Gaussian
N ðm;μm;ΣmÞ with prior mean μm and spatially correlated prior
covariance matrix Σm ¼ Σ0

m ⊗ Στ given by the Kronecker product
of the stationary covariance of the model variables Σ0

m and the spa-
tial correlation matrix Σt defined by a prior spatial correlation func-
tion υðτÞ. We also assume that the measurement error vector ε is
Gaussian ε ∼N ðε; 0;ΣεÞ with mean 0 and covariance matrix Σε.
Then, the posterior distribution PðmjdÞ is Gaussian
N ðm;μmjd;ΣmjdÞ with conditional mean μmjd:

μmjd ¼ μm þ ΣmFTðFΣmFT þ ΣεÞ−1ðd − FμmÞ (5)
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and conditional covariance matrix Σmjd:

Σmjd ¼ Σm − ΣmFTðFΣmFT þ ΣεÞ−1FΣm: (6)

Buland and Omre (2003) present a Bayesian linearized AVO in-
version in which the formulation in equations 5 and 6 is applied to
the seismic inversion problem. The model variables are the elastic
properties (P- and S-wave velocity and density), and the linear for-
ward operator is the convolution of a known wavelet and the lin-
earized AVO approximation of the reflectivity coefficients (Buland
and Omre, 2003). The matrix F is expressed as a matrix multipli-
cation, F ¼ WAD, whereW is the wavelet Toeplitz matrix, A is the
reflectivity coefficients matrix, andD is a first-order differential ma-
trix and it is applied to the logarithm of the elastic properties,
d ¼ WAD lnðmÞ þ e. If a linear rock-physics model is available
to relate the reservoir properties r to the logarithm of the elastic
properties, lnðmÞ; then the Bayesian inversion can be extended
to the joint seismic and rock-physics problem d ¼ WADRrþ e
as shown in Grana et al. (2017) and Fjeldstad and Grana (2018).
For nonlinear problems, numerical methods such as MCMC al-

gorithms are adopted. MCMC algorithms are iterative methods in
which at each iteration, a model realization miþ1 is sampled from a
proposal distribution conditioned on the model mi at the previous
iteration and it is accepted or rejected according to their probability
ratio. The chain of accepted models asymptotically converges to
the posterior distribution of the model properties conditioned on
the data and represents the solution of the inverse problem. The
most common MCMC method for seismic inversion problems is
the Metropolis algorithm, in which the proposed model realization
m 0 is drawn from a symmetric proposal distribution
gðm 0jmiÞ ¼ gðmijm 0Þ and accepted with probability p

p ¼ min

�
Pðdjm 0ÞPðm 0Þgðmijm 0Þ
PðdjmiÞPðmiÞgðm 0jmiÞ

; 1

�

¼ min

�
Pðdjm 0ÞPðm 0Þ
PðdjmiÞPðmiÞ

; 1

�
: (7)

At each iteration, we randomly generate a random number u accord-
ing to a uniform distributionUð½0; 1�Þ. If u < p,m 0 is accepted (i.e.,
miþ1 ¼ m 0); otherwise, m 0 is rejected (i.e., miþ1 ¼ mi). The
Metropolis algorithm is a special case of the more general Metropo-
lis-Hasting algorithms in which the proposal distribution is assumed
to be symmetric rather than a general PDF.
We assume that the prior distribution PðmÞ is Gaussian

N ðm;μm;ΣmÞ with prior mean μm and spatially correlated prior
covariance matrix Σm ¼ Σ0

m ⊗ Στ, and that the likelihood function
PðdjmÞ is GaussianN ðd; fðμmÞ;ΣεÞ, and then the acceptance prob-
ability p can be written as

p ¼ min

�
exp

�
−
1

2
ððd 0 − dÞTΣ−1

d ðd 0 − dÞ

− ðdi − dÞTΣ−1
d ðdi − dÞÞ

�

× exp

�
−
1

2
ððm 0 − μmÞTΣ−1

m ðm 0 − μmÞ

− ðmi − μmÞTΣ−1
m ðmi − μmÞÞ

�
; 1

�
; (8)

where d 0 ¼ fðm 0Þ, Σd ¼ Σε ⊗ Ind , and di ¼ fðmiÞ. After
convergence, the statistical estimators of the posterior distribu-
tions are calculated from a set of model realizations, excluding
the realizations in the “burn-in” period in which the chain still
depends on the initial model realization.
An efficient compromise between linearized analytical solutions

and MCMC iterative solutions is given by ensemble-based methods,
such as the ensemble Kalman filter (EnKF), ensemble smoother
(ES), and ES with multiple data assimilation (ES-MDA) and have
been used in reservoir engineering models (Emerick and Reynolds,
2013) and geophysical studies (Liu and Grana, 2018). These methods
are based on a Bayesian updating step of an ensemble of prior mod-
els. The EnKF assimilates data sequentially in time, the ES assim-
ilates all data simultaneously in a single update step, and the ES-
MDA iteratively assimilates the same data multiple times. In general,
ensemble methods are more efficient than MCMC but the limited
ensemble size might affect the uncertainty quantification.

CODE DESCRIPTION

The SeReMpy library includes four modules and a data folder
that contains multiple synthetic data sets used for the examples
and the elevation-temperature data set from Yellowstone National
Park. The folder Output contains sample output files of the pro-
posed scripts. In this section, we describe the four modules and in-
troduce the scripts with illustrative examples for their use.
Additional information on the external libraries used in SeReMpy
and the functions included in the modules are available in the docu-
mentation file included in the code package.
The RockPhysics.py module contains functions with several

rock-physics models. For a reference of the derivation of the
rock-physics models used in this module, we refer to Avseth et al.
(2010), Dvorkin et al. (2014), and Mavko et al. (2020). The goal of
this module is to provide a set of functions that calculate the elastic
response in terms of P- and S-wave velocity and density of a satu-
rated porous rock with known porosity, mineral volumes, and fluid
saturations. The density is computed using the function DensityMo-
del, whereas the P- and S-wave velocities are computed using one of
the following models: Han’s linearized model, Wyllie’s equation,
Raymer’s equation, Dvorkin’s soft sand and stiff sand models,
the spherical inclusion model, and Berryman’s inclusion models
(Mavko et al., 2020). For porous rocks with multiple mineral com-
ponents and/or multiple fluid components, the elastic properties
(elastic moduli and density) of the effective solid and fluid phases
are computed using the function MatrixFluidModel.
TheGeostats.pymodule contains functions for kriging and geostat-

istical simulations of discrete and continuous random variables. For
the derivation of the geostatistical algorithms, we refer readers to
Deutsch (2002) and Deutsch and Journel (1998) for the FORTRAN
library GSLIB. TheGeostats.pymodule contains functions for simple
kriging and ordinary kriging for the interpolation of continuous prop-
erties and for indicator kriging for the interpolation of discrete proper-
ties given a set of sparse measurements and their locations and a
selected spatial correlation model (Deutsch, 2002). It also includes
functions for sequential Gaussian simulation (SGS) for sampling con-
tinuous properties and for sequential indicator simulation for sampling
discrete properties with spatial correlation and conditioned on the
available measurements (Deutsch, 2002). These functions are based
on the concept of spatial covariance functions (or variograms). Iso-
tropic and anisotropic spatial covariance functions can be generated

SeReMpy library F63
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for 1D and 2D applications using the functions SpatialCovariance1D
and SpatialCovariance2D and one of the available theoretical func-
tions (exponential, Gaussian, and spherical models). Anisotropic krig-
ing interpolation and simulations require the use of the function
SpatialCovariance2D. Correlated simulations of multiple random
variables can also be sequentially generated using a local variable
mean computed according to a linear regression model. For efficient
implementations of the simulation methods for 2D and 3D problems,
we recommend the open-source software SGeMS (Remy et al., 2009),
the GSLIB library (Deutsch and Journel, 1998), and the MATLAB
toolbox mGstat (Hansen, 2004).
The Inversion.pymodule contains functions for seismic and rock-

physics inversion using analytical and numerical solutions. The
available functions include multiple methods for seismic and pet-
rophysical inversion. The function SeismicInversion implements
the Bayesian linearized AVO seismic inversion based on the
approach presented in Buland and Omre (2003). The linearized
forward model is available in the function SeismicModel. Five
alternative algorithms are proposed for rock-physics inversion ac-
cording to various statistical assumptions: a linear Gaussian model,
a linear Gaussian mixture model, a nonlinear Gaussian model, a
nonlinear Gaussian mixture model, and a nonlinear nonparametric
model, according to the methods presented in Grana and Della
Rossa (2010) and Grana (2016, 2018). Inversions based on stochas-
tic sampling and optimization algorithms, such as ES-MDA (Liu
and Grana, 2018) and MCMC (de Figueiredo et al., 2018) are also
implemented. The module also provides functions for data transfor-
mation and back transformation of non-Gaussian distributions.
The Facies.py module contains functions for facies classification

from multiple attributes, including the Gaussian and nonparametric
methods proposed in Doyen (2007).
The SeReMpy library also includes multiple scripts with several

examples. In the following, we describe the tutorial scripts to illus-
trate how to use the modules. The script RockPhysicsModelDri-
ver.py shows the application of rock-physics models to calculate
the P- and S-wave velocity and density from a vector of porosity
values of a well log. The input data are provided in the ASCII file
data1.dat. This example assumes a single mineral (quartz) and a
single fluid component (water). For application to data sets with
multiple mineral and fluid components, the user should compute the
effective bulk and shear moduli and density of the solid and fluid
phases given the volumetric fractions. An example of such a model
is given in the “Applications” section. The script also shows various
plotting tools to visualize the vector of model predictions as a well
log or in the petroelastic domain.
The scriptGeostatsContinuousDriver.py shows an illustrative ex-

ample for geostatistical methods for interpolation and simulation of
a continuous random variable, based on a set of available measure-
ments and a spatial correlation model. In the first example, in which
four measurements of P-wave velocity are available, we interpolate
and simulate the value of the velocity at a given location, using an
exponential covariance function. The interpolation is obtained using
simple or ordinary kriging, whereas the simulation is obtained using
SGS. In the second example, we apply the geostatistical methods to
the elevation data set of a region of Yellowstone National Park. For
this data set, the true elevation map is available. From the true map,
we extract 15 measurements, and we interpolate and simulate the
elevation values at all of the remaining locations. The script
GeostatsDiscreteDriver.py replicates the same examples but using

a discrete random variable as the property of interest. In the first
example with P-wave velocity measurements, the discrete property
represents lithologic facies (sand and shale), whereas in the eleva-
tion example, the discrete property represents topographic features
(valleys and peaks). The script GeostatsDiscreteDriver.py also in-
cludes a simulation of a discrete random variable using Markov
chain models that can be used as a simulation method to generate
vertical sequences of facies or lithologies.
The script SeismicModelDriver.py shows the seismic forward

model based on the Buland and Omre approach. The forward op-
erator is a convolution of a wavelet and the Aki-Richards’ linear-
ized approximation of the Zoeppritz equations. The script applies
the function to the data set in the ASCII file data2.dat that includes
the well logs of the P- and S-wave velocity and density and com-
putes three partial-stacked seismograms according to three inci-
dent angles. The script SeismicInversionDriver.py implements the
Bayesian linearized AVO inversion based on the Buland and
Omre approach. The script applies the function to the data set
in the ASCII file data3seis.dat that includes three partial-stacked
seismograms according to three incident angles and computes the
corresponding P- and S-wave velocity and density. The script
RockPhysicsInversionDriver.py shows the Bayesian rock-physics
inversion methods, for linear and nonlinear forward models with
various statistical assumptions for the PDF of the model variables
(Gaussian, Gaussian mixture, and nonparametric). The script ap-
plies the function to the data set in the ASCII file data4.dat that
includes the well logs of the P- and S-wave velocity and density
and computes the corresponding porosity, clay volume, and water
saturation. The scripts ESSeisInversionDriver.py and ESPetroIn-
versionDrive.py show the ES-MDA inversion method for seismic
and petrophysical inversion, respectively. The seismic inversion is
applied to the data in the ASCII file data3seis.dat, whereas the
petrophysical inversion is applied to the ASCII file data5seis.dat.
Both methods generate a set of realizations and the corresponding
statistical estimators of the variables of interest (elastic properties
for the seismic inversion and petrophysical properties for the geo-
physical inversion).
The script FaciesClassificationDriver.py shows the Bayesian fa-

cies classification of multiple well logs, for example, the P-wave
velocity and density, assuming Gaussian distribution or nonpara-
metric distributions estimated using kernel density estimation
(Doyen, 2007). The input might include more than two variables,
and the output consists of the most likely classification and the
probability distributions of each facies.

APPLICATIONS

In this section, we show six applications: (1) rock-physics model
for the prediction of elastic properties and facies using well-log
data, (2) geostatistical simulation of continuous and discrete proper-
ties using well logs, (3) geostatistical interpolation and simulation
of 2D maps of temperature, (4) elastic inversion of partial stacked
seismograms with Bayesian linearized AVO inversion, (5) rock-
physics inversion of partial stacked seismograms with MCMC
methods, and (6) 2D seismic inversion. All of the results were ex-
ported and plotted in MATLAB, but the Python codes exemplify the
Python lines to reproduce the same plots using matplotlib.pyplot.
In Application1.py, the data set 1Ddatalog.dat includes a set of

well logs from a borehole located offshore Norway. The data set
includes the density, compressional, and shear sonic logs and the
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petrophysical curves obtained from the quantitative log interpretation
of the measured logs and the corresponding depth locations of the
petrophysical values. The goal of this application is to compute
the rock-physics model predictions of the P- and S-wave velocity
and density and the facies classification. We first load the data set
and define the initial parameters of the rock-physics model. We adopt
the stiff sand model (Dvorkin et al., 2014), and the initial parameters
include the critical porosity, coordination number, and pressure. We
assume two mineralogical components, namely, quartz and clay, and
two fluid components, namely, water and oil. We compute the effec-
tive solid and fluid phase properties using the function MatrixFluid-
Model. The density of the saturated rock is computed with the
function DensityModel. The P- and S-wave velocities are computed
using the function StiffsandModel that combines the Hertz-Mindlin
and Hashin-Shtrikman equations with the Gassmann’s equations.
The elastic model predictions are shown in Figure 1. We then define
two facies, namely, sand and shale, and we compute a log-facies clas-
sification using a Gaussian distribution for the P- and S-wave velocity
and density in each facies. The classification is obtained by applying
the function BayesGaussFaciesClass that computes the most-likely
facies and the facies probabilities. The predicted facies profile is
shown in Figure 1.
In Application2.py, we adopt the same data set as in the first

application and we select a subsample of 10 measurements of
porosity and P-wave velocity. The goal of this application is to
predict the porosity and P-wave velocity profiles using geostatis-
tical interpolation and simulations. Porosity and P-wave velocity
are assumed to be independent for simplicity, and interpolation

and simulations are performed independently. We first interpolate
the porosity measurements using the function SimpleKriging that
computes the simple kriging estimate at each location along the
well log. We then simulate 10 realizations of porosity using the
function SeqGaussianSimulation. We then repeat the same exer-
cise with the P-wave velocity. The kriging estimates and the sto-
chastic realizations of the porosity and P-wave velocity are shown
in Figure 2. The kriging results are generally smooth because krig-
ing is an interpolation method that minimizes the error in the mean
square sense. The SGS results show a larger heterogeneity because
SGS aims to reproduce the spatial variability of the model varia-
bles. This application also includes the simulation of facies using
the Markov chain model. We assume two facies, sand and shale,
and we adopt a stationary first-order Markov model. We first es-
timate the transition matrix from the reference facies classification
by counting the number of transitions. We then generate stochastic
realizations using the function MarkovChainSimulation. Ten ran-
dom realizations are shown in Figure 2.
In Application3.py, we apply simple kriging and SGS methods

to the temperature data set measured in an area of the Yellowstone
National Park. The true measurements are shown in Figure 3. From
the full data set, we extract 100 temperature measurements at random
locations, and we assume that this subset represents all of the avail-
able measured data. We then apply simple kriging (SimpleKriging) to
interpolate the measurements assuming an isotropic exponential cor-
relation function with a correlation length of 25 m and a prior Gaus-
sian distribution with the prior mean and variance estimated from the
measured data set. We then apply SeqGaussianSimulation to simulate

Figure 1. Application 1 — rock physics and facies classification: (a) porosity, (b) clay volume, (c) water saturation, (d) predicted P-wave
velocity, (e) predicted S-wave velocity, (f) predicted density, and (g) predicted facies (sand in yellow and shale in gray).
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stochastic realizations of the temperature according
to the same assumptions of simple kriging. The
results are shown in Figure 3. The kriging map
shows the smooth variations of the temperature,
whereas the random realization shows the higher
local variability.
In Application4.py, we apply the Bayesian lin-

earized AVO inversion (Buland and Omre, 2003)
to a synthetic seismic data set (1Ddataseis.dat)
calculated from a real set of elastic well logs
(1Ddatalog.dat). The data include three partial-
stacked seismograms corresponding to the near,
mid, and far angles (Figure 4), the two-way trav-
eltime, and the elastic logs in the time domain.
We first define the initial parameters of the
model, the error distribution, and the wavelet.
We generate a prior model by filtering the true
elastic logs to a low frequency using the Butter-
worth filter. We define the spatial correlation ma-
trix using an exponential model with correlation
length of five time samples, equivalent to 5 ms.
We then compute the seismic inversion results,
namely, the PDF of P- and S-wave velocity
and density, using the function SeismicInversion
that returns the pointwise maximum a posteriori
of the posterior distribution and the lower and
upper bounds of the 0.95 confidence interval
for each of the model variables. The pointwise

maximum a posteriori and the 0.95 confidence interval are shown
in Figure 4.
In Application5.py, we apply the MCMC method to a synthetic

seismic data set (1Ddatabseis.dat) calculated from a real set of pet-
rophysical well logs of porosity and water saturation saved in the
data set (1Ddatablog.dat) using rock physics and seismic models.
The data include three partial-stacked seismograms corresponding
to the near, mid, and far angles (Figure 5), the two-way traveltime,
and the petrophysical logs of porosity and water saturation in the
time domain. We assume that the mineral phase is homogeneous
and corresponds to quartz. The error model corresponds to a sig-
nal-to-noise ratio of five. We then apply an MCMC method based
on the Metropolis approach (equation 8) using the seismic forward
model in SeismicModel for the evaluation of the likelihood. The
MCMC includes 105 iterations, and the posterior distribution is es-
timated from 90,000 realizations. Figure 5 shows a subset of 9000
realizations as well as the mean, the pointwise maximum a poste-
riori, and the 0.95 confidence interval of the posterior distribution.
The results are overall satisfactory except for the prediction of water
saturation in the bottom part of the interval, where the true data are
highly skewed toward 1.
In Application6.py, we apply the Bayesian linearized AVO inver-

sion to synthetic seismic data saved in the data set (2Ddataseis.dat)
including three partial-stacked seismograms corresponding to the
near, mid, and far angles (Figure 6). The true model used to generate
the synthetic data is also provided in the data set (2Ddataelas.dat).
The proposed application is a trace-by-trace inversion in which the
Bayesian linearized AVO inversion approach is applied sequentially
to each seismic trace. The pointwise maximum a posteriori of the
posterior distribution of P- and S-wave velocity and density is
shown in Figure 6.

Figure 2. Application 2 — kriging and SGS: (a) interpolated porosity, (b) stochastic
realizations of porosity, (c) interpolated P-wave velocity, (d) stochastic realizations of P-
wave velocity, and (e) stochastic realizations of facies (sand in yellow and shale in gray).
The black stars represent the actual measurements.

Figure 3. Application 3 — kriging and SGS of 2D data: (a) true
temperature maps (the black dots represent the locations of the mea-
sured data used for interpolation and simulations), (b) simple krig-
ing interpolation of temperature, and (c) one random stochastic
realization of temperature.
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Figure 4. Application 4 — Bayesian linearized
AVO seismic inversion: (a) three partial-stacked
seismic data and (b-d) posterior distribution of
the P- and S-wave velocity and density. The black
curves represent the measured data, the blue
curves represent the prior (low-frequency) model,
and the red curves represent the posterior distribu-
tion (the solid red lines represent the maximum a
posteriori and the dashed red lines represent the
0.95 confidence interval).

Figure 5. Application 5 – MCMC petrophysical
inversion: (a) three partial-stacked seismic data
and (b and c) posterior distribution porosity and
water saturation. The black curves represent the
measured data, the blue curves represent the prior
(low-frequency) model, the red curves represent
the posterior distribution (the solid red lines re-
present the mean, the green lines represent the
maximum a posteriori model, and the dashed
red lines represent the 0.95 confidence interval),
and the gray curves represent randomly selected
stochastic realizations.
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CONCLUSION

We presented a comprehensive seismic reservoir modeling li-
brary, namely, SeReMpy. The code is written in Python and relies
on four main libraries for rock physics, geostatistics, inversion, and
facies classification. The SeReMpy library is the first open-source
Python library that combines geophysical modeling with geostatis-
tical methods for the prediction and stochastic simulation of reser-
voir properties conditioned on seismic data. The functions in the
rock physics and geostatistics modules implement well known con-
cepts and tools in geoscience such as rock-physics models for the
prediction of elastic properties and geostatistical interpolation and
simulation of spatially correlated random variables. These functions
are then integrated in the module with recent advances in Bayesian
methods for seismic and petrophysical inversion. The SeReMpy li-
brary also includes analytical solutions of the Bayesian linear Gaus-
sian inversion problem and numerical solutions using MCMC or
ensemble-based methods. The library includes several scripts that
provide a tutorial for the use of the modules and multiple applica-
tions to synthetic and real data sets.
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