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ABSTRACT

We have developed a probabilistic formulation to derive
the probability density function of amplitude variation with
offset (AVO) attributes given the distribution of elastic prop-
erties, in the context of AVO analysis of well log data. The
proposed probabilistic formulation includes the analytical
expression of the posterior distribution and contributes to the
correct propagation of the uncertainty through the AVO
model. When this analysis is performed in each facies, the
resulting posterior probability density functions of AVO
attributes, conditioned by the elastic attributes and the un-
derlying log-facies classification, can be used in a Bayesian
inversion workflow to obtain the AVO-attribute-based facies
classification. This classification is then compared with the
petrophysical log-facies profile and can be extended to the
entire reservoir model if inverted seismic attributes are avail-
able. We demonstrate the methodology on a data set from an
onshore tight-sand gas reservoir in Texas. The main results
of the application are the set of probability distributions of
AVO properties as a function of elastic attributes in each fa-
cies and the corresponding AVO-based facies profile at the
well location. A comparison of different statistical assump-
tions and a sensitivity analysis on the resolution of the elastic
data set are presented.

INTRODUCTION

Seismic attributes can be linked to rock properties and log facies
through rock-physics modeling and facies classification, respec-
tively. Several attributes can be used, depending on the specific ap-
plication and study, e.g., seismic velocities, impedances, elastic
moduli, or amplitude variation with offset (AVO) attributes. These

physical models and the corresponding model predictions are af-
fected by uncertainty. Indeed, although mathematical-physical
models in rock physics, petrophysics, and seismic modeling can
be very accurate, there are several sources of uncertainty that can
affect rock-physics predictions, including measurement errors, ap-
proximations, lack of knowledge, heterogeneity, and natural vari-
ability. The limited amount of data in which we can measure all
the properties of interest (core samples and well logs) does not allow
correct assessment of model uncertainty; however, statistical tools
can be combined with geologic knowledge and assumptions to
provide an estimate of the uncertainty associated with the model
predictions.
The correct propagation of the input uncertainty through the

model to the model predictions is a key challenge. Generally, this
task is faced using Monte Carlo simulations: A large data set is gen-
erated through statistical methods, the physical model is determin-
istically applied, and finally, the uncertainty in the so-generated
output is quantified through statistical estimators, such as the
variance, or full probability distributions. Several examples of this
worklow can be found in the literature, e.g., Avseth et al. (2005) and
Doyen (2007). The specific application to rock physics is com-
monly called statistical rock physics. The first work was presented
by Mavko and Mukerji (1998) and focuses on a statistical approach
to Gassmann fluid substitution based on Monte Carlo simulations.
Several applications in rock physics and petrophysics were then
proposed. Examples of applications include petroelastic models,
lithology substitution, diagenesis, and sorting (Avseth et al., 2001,
2005; Mukerji et al., 2001). Grana (2014) proposes an analytical
formulation for some of these statistical rock physics models.
Today, statistical rock physics is not only a method to assess un-
certainty in rock-physics predictions, but it is also used as a quan-
titative method in seismic inversion, reservoir characterization, and
reservoir simulation. Examples of applications of statistical rock
physics in reservoir characterization can be found in Eidsvik et al.
(2004), Gunning and Glinsky (2007), González et al. (2008), Spikes
et al. (2007), and Bosch et al. (2010).
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The goal of this paper is to extend the analytical probabilistic
workflow (Grana, 2014) to AVOmodeling. AVO attributes are often
used in seismic interpretation and seismic reservoir characterization
(Aki and Richards, 1980; Castagna and Backus, 1993). Specifically,
AVO attributes can be linked to lithology and fluid and can be used
in reservoir facies classification (Hilterman, 1990; Verm and Hilter-
man, 1995). In this paper, we first derive the analytical formulation
of the probability distribution of two common AVO attributes,
namely intercept and gradient. The formulation is obtained using
Shuey’s approximation (Shuey, 1985), but it can be easily extended
to any other formulation, linear, or nonlinear, with respect to the
elastic properties. The first advantage of this formulation is that
the uncertainty is correctly propagated from the input (elastic prop-
erties: P- and S-wave velocities and density) to the output (AVO
attributes: intercept and gradient) because it is based on the exact
expression of the probability density function of the AVO attributes.
We highlight that this formulation only guarantees that the input
uncertainty is correctly propagated; however, if the uncertainty
in the input data is biased, the posterior uncertainty will be biased
too. The second goal is to integrate the so-obtained results in facies
classification. To achieve this task, we propose an AVO-property-
based Bayesian classification method in which we use the analytical
solution of the probability distribution of AVO attributes condi-
tioned by the facies. The Bayesian classification is not new in geo-
physics (see, e.g., Doyen, 2007), and it is proposed here as an
example of application for the use of the previously obtained prob-
ability distribution as a likelihood function.
To demonstrate the applicability of the methodology, we apply

the method to a data set from a well in a gas reservoir in Texas.
The data set is a clastic reservoir and shows an interesting geologic
sequence of sand, tight sand, and interbedded shale. In the first part
of the application, we apply the analytical formulation proposed in
the “Methodology” section to estimate the probability distribution
of AVO properties. Because this distribution depends on the as-
sumptions made for the probability distribution of the input proper-
ties, i.e., elastic attributes, we provide a comparison of the results
obtained under different assumptions: unimodal, multimodal, and
nonparametric. A comparison with the traditional Monte Carlo sim-
ulation approach is presented as well. In the second part of the
application, a Bayesian classification method is proposed to recon-
struct the facies classification at the well location from AVO proper-
ties. This part of the application can be seen as an example of a
feasibility test for AVO-based facies classification in the entire res-
ervoir model. A sensitivity analysis is also proposed to show the
effect of resolution and prior information on the classification
results.

METHODOLOGY

The goal of this section is to introduce the analytical formulation
for probabilistic AVO modeling and the application to facies clas-
sification. In the following, we first derive the probability density
function of AVO attributes given the probability density function of
input elastic properties and an AVO approximation equation. Then,
we derive the probability density function of facies conditioned by
AVO attributes, using Bayes’ rule.
We first define the following AVO attributes: the intercept R, the

gradient G, and the third term C, according to Shuey’s approxima-
tion (Shuey, 1985)

8>>>>><
>>>>>:

R ¼ 1
2

�
ΔVP

VP

þ Δρ
ρ̄

�

G ¼
�
1
2
ΔVP

VP

− 2 VS
2

VP
2

�
Δρ
ρ̄ þ 2 ΔVS

VS

��

C ¼ 1
2
ΔVP

VP

; (1)

where

8>><
>>:

ΔVP ¼ VPðL2Þ − VPðL1Þ VP ¼ VPðL2ÞþVPðL1Þ
2

ΔVS ¼ VSðL2Þ − VSðL1Þ VS ¼ VSðL2ÞþVSðL1Þ
2

Δρ ¼ ρðL2Þ − ρðL1Þ ρ̄ ¼ ρðL2ÞþρðL1Þ
2

; (2)

where L1 and L2 indicate, respectively, the upper and lower layers
across the interface.
The three-term Shuey approximation is then given by

RPPðθÞ ¼ RþG sin2 θ þ Cðtan2 θ − sin2 θÞ; (3)

where θ is the incidence angle.
For simplicity, we assume that the velocities and the density of

the upper layer are constant and equal to the known values VPðL1Þ,
VSðL1Þ, and ρðL1Þ, respectively, and we focus on the AVO response
at the top of the reservoir. Therefore, we only have three variables:
the P- and S-wave velocities and the density of the lower layer (in
the following indicated as VP, VS, and ρ to simplify the notation).
Mathematically, the AVO model in equations 1 and 2 is a vector

function:

F∶R3þ → ½−1;1�3 ðVP; VS; ρÞ ↦ ðR;G; CÞ. (4)

If the elastic attributes, i.e., the P- and S-wave velocities and den-
sity, of the lower layer are known, then we can compute the AVO
response at the interface between the upper and lower layer using
equations 1 and 2. However, elastic attributes are generally uncer-
tain. A deterministic model cannot quantify the uncertainty. In the
following, we propose a new mathematical formulation to apply the
AVO model in equations 1 and 2 to probability density distributions
instead of deterministic values. In Grana (2014), a probabilistic ap-
proach for a rock-physics model is introduced to derive the prob-
ability density function of model predictions (elastic properties)
computed through a rock physics model applied to uncertain var-
iables (rock properties). In this work, we extend the formulation
proposed in Grana (2014) to AVO modeling and analytically
compute the probability density function of AVO properties
fR;G;CðR;G; CÞ, where the bold characters represent random var-
iables.
In a multidimensional probabilistic workflow, we aim to deter-

mine the joint density function fR;G;CðR;G;CÞ of three random var-
iables ðR;G;CÞ that are functions of three other random variables
VP;VS; ρ, as in ½R;G;C� ¼ FðVP;VS; ρÞ, in terms of joint density
of fVP ;VS ;ρðVP; VS; ρÞ.
To find fR;G;CðR;G;CÞ given the distribution of the input param-

eters fVP;VS;ρðVP; VS; ρÞ and the transformation ½R;G;C� ¼
FðVP;VS; ρÞ (Papoulis, 1984), we first solve the system in equa-
tion 4 to find the real roots V0

P; V
0
S; ρ

0 of the system. Then,
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fR;G;CðR;G; CÞ ¼
fVP;VS;ρðV0

P; V
0
S; ρ

0Þ
jJFðV0

P; V
0
S; ρ

0Þj ; (5)

where JFðV0
P; V

0
S; ρ

0Þ is the Jacobian of the function in equation 4
computed in the roots ðV0

P; V
0
S; ρ

0Þ, and jJFðV0
P; V

0
S; ρ

0Þj is the de-
terminant of the Jacobian (for a derivation of the result in equation 5,
we refer the reader to Papoulis, 1984).
In the present AVO problem, the zeros of the function in equa-

tions 1 and 2 are given by

8>>>><
>>>>:

V0
P ¼ ðCþ1ÞVPðL1Þ

1−C

V0
S ¼ 1

ð2þR−CÞðC−1Þ2 ð−RðC − 1Þ2VSðL1Þ þ CVSðL1Þ
− 2C2VSðL1Þ þ C3VSðL1Þ þ

ffiffiffiffi
K

p Þ
ρ0 ¼ ðC−R−1ÞρðL1Þ

R−C−1

;

(6)

where

K ¼ ½ðC − 1Þ2ðGðC − R − 2ÞðVPðL1ÞÞ2 þ 4ðVSðL1ÞÞ2
þ CððRþ 2ÞðVPðL1ÞÞ2
− 8ðVSðL1ÞÞ2Þ − C2ððVPðL1ÞÞ2 − 4ðVSðL1ÞÞ2ÞÞ�: (7)

The solution in equation 6 provides positive roots for every
admissible value ðR;G;CÞ. The Jacobian of the function in equa-
tions 1 and 2 is then written as

JF¼

2
664

∂R
∂VP

∂G
∂VP

∂C
∂VP

∂R
∂VS

∂G
∂VS

∂C
∂VS

∂R
∂ρ

∂G
∂ρ

∂C
∂ρ

3
775

¼

2
666664

2VPðL1Þ
ðVPðL1ÞþVPÞ2−

8ðVSðL1ÞþVSÞðρðL1Þð3VSðL1Þ−VSÞ−ρðVSðL1Þ−3VSÞÞ
ðρðL1ÞþρÞðVPðL1ÞþVPÞ2

2VPðL1Þ
ðVPðL1ÞþVPÞ2

0
8ðρðL1ÞðVSðL1Þ−VSÞ−ρðVSðL1Þþ3VSÞÞ

ðρðL1ÞþρÞðVPðL1ÞþVPÞ2 0

2ρðL1Þ
ðρðL1ÞþρÞ2 − 8ðVSðL1ÞþVSÞ2

ðρðL1ÞþρÞ2ðVPðL1ÞþVPÞ2 0

3
777775
;

(8)

and the determinant of the Jacobian is

jJFðVP; VS; ρÞj

¼ 32ρðL1ÞVPðL1ÞðρðL1ÞðVS − VSðL1ÞÞ þ ρð3VS þ VSðL1ÞÞÞ
ðρðL1Þ þ ρÞ3ðVPðL1Þ þ VPÞ4

.

(9)

We then compute the determinant of the Jacobian in the zeros of the
function V0

P; V
0
S; ρ

0:

jJFðV0
P; V

0
S; ρ

0Þj ¼ ðC − 1Þ2ðC − Rþ 1Þ2 ffiffiffiffi
K

p

2ρðL1ÞðVPðL1ÞÞ3
: (10)

Finally, we can write the probability density function of the AVO
attributes fR;G;CðR;G;CÞ by applying equation 5 with the Jacobian
obtained in equation 10 as

fR;G;CðR;G; CÞ

¼ 2ρðL1ÞðVPðL1ÞÞ3
ðC − 1Þ2ðC − Rþ 1Þ2 ffiffiffiffi

K
p fVP;VS;ρðV0

P; V
0
S; ρ

0Þ (11)

with K given by equation 7.
For example, the input probability distribution fVP;VS;ρ can be a

trivariate Gaussian distribution:

fVP;VS;ρðVP; VS; ρÞ ¼ NðμVP;VS;ρ;ΣVP;VS;ρÞ. (12)

Although the Gaussian distribution is a very common assumption
in geophysics, many geologic scenarios show multimodal behaviors
especially when multiple facies are present. In this work, we assume
a Gaussian mixture model (Gallop, 2006; Grana and Della Rossa,
2010). A Gaussian mixture model is a linear combination of Gaus-
sian distributions. The number of components of the linear combi-
nation determines the number of modes of the Gaussian mixture.
Gaussian mixtures are often used to classify multimodal data com-
ing from different statistical populations (Hastie et al., 2002). In our
application, we assume that the number of the modes is the number
of facies. This assumption implies that we assume that elastic prop-
erties are Gaussian within each facies. Mathematically, the Gaus-
sian mixture model can be written as

fVP;VS;ρðVP; VS; ρÞ ¼
XN
k¼1

λkf
ðkÞ
VP;VS;ρðVP; VS; ρÞ

¼
XN
k¼1

λkNðμðkÞVP;VS;ρ;Σ
ðkÞ
VP;VS;ρÞ; (13)

where N is the number of components (i.e., number of facies, ac-
cording to our assumption), λk represent the weights of the compo-
nents (i.e., the proportion of the facies), and superscript k indicates
that the parameters of the Gaussian distributions are facies de-
pendent.
If we assume that the distribution of elastic properties is a Gaus-

sian mixture (equation 13), then the distribution of AVO attributes is
multimodal and given by

fR;G;CðR;G;CÞ

¼ 2ρðL1ÞðVPðL1ÞÞ3
ðC − 1Þ2ðC − Rþ 1Þ2 ffiffiffiffi

K
p

XN
k¼1

λkNðμðkÞVP ;VS;ρ;Σ
ðkÞ
VP ;VS ;ρÞjV0

P
;V0

S
;ρ0 .

(14)

Equation 14 is obtained by substituting in equation 5 the expres-
sion for fVP ;VS ;ρðV0

P; V
0
S; ρ

0Þ obtained in equation 13 and the recip-
rocal of the determinant of the Jacobian JFðV0

P; V
0
S; ρ

0Þ obtained in
equation 10.
We point out that, if we do not assume known constant values for

the elastic properties of the upper layer ðVPðL1Þ; VSðL1Þ; ρðL1ÞÞ
(for example, the overcap shale in the application below), the
derivation of the analytical formulation is more complex because
it includes six random variables and the system in equation 1 is
underdetermined. If the values of the upper layer at the top of
the reservoir are uncertain, Monte Carlo simulations provide a valid
alternative to the analytical approach. Another alternative could be a
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semianalytical solution in which we assume or estimate the distri-
bution of the elastic properties of the upper layer, we compute the
median and the corresponding confidence interval (for example P10
and P90), and we run the proposed methodology three times using
the selected percentiles as a reference for the upper layer. An ex-
ample is shown in the “Application” section. The proposed formu-
lation refers to the AVO response at the top of a reservoir; a similar
formulation can be derived for the bottom by assuming random var-
iables for the elastic properties of the upper layer (the reservoir) and
constant values for the lower layer.
To derive a facies classification based on AVO attributes, we fi-

nally propose a Bayesian classification based on the result in equa-
tion 14. Specifically, to estimate the probability PðπjR;G;CÞ of
facies π conditioned by AVO attributes ðR;G;CÞ, we apply Bayes’
rule:

PðπjR;G;CÞ ¼ PðR;G;CjπÞPðπÞ
PðR;G;CÞ ∝ PðR;G;CjπÞPðπÞ;

(15)

where PðR;G;CjπÞ is computed using equation 14 and PðπÞ rep-
resents the prior probability of the overall proportions of the facies.
According to Bayes' rule, PðπÞ should be assumed independently of
the data. This information could be provided by geologic analysis of
nearby fields or from facies profiles from other wells.

APPLICATION

In this section, we show the application of the probabilistic model
presented in the “Methodology” section to a set of logs from a well
producing gas in an onshore tight-sand reservoir in Texas. We first
show the results of the probabilistic AVO model, and we compare
the results under three different statistical assumptions for the input
distribution: Gaussian, Gaussian mixture, and nonparametric distribu-
tion. In the second part of the application, we show the Bayesian facies
classification based on AVO attributes and the sensitivity study on the
input elastic properties in terms of resolution and prior assumptions.
The data set under study refers to a deep tight-sand reservoir pro-

ducing gas. The data set consists of a complete set of well logs in-
cluding sonic logs (P- and S-wave velocities), petrophysical logs
(neutron porosity, density, gamma ray, and resistivity), and volu-
metric curves computed in formation evaluation analysis (mineral
volumes, porosity, and fluid saturations). The reservoir is located
approximately 4500-m deep (Figure 1). In the interval under study,
we can observe a sequence of alternating sand and shale layers. The
main reservoir consists of clean sand; its thickness is about 10 m,
and the average porosity inside the reservoir is 15%. A log-facies
classification has also been performed, combining core sample
analysis and sedimentological information (Figure 1). The main res-
ervoir layer is shown in yellow; sand layers with porosity lower than
10% (brown facies in Figure 1) were identified in the lower part.
The histograms of the distributions of the elastic properties in
the different facies are shown in Figure 2.
The goal of this application is to determine the exact analytical

probability density function of AVO properties, and we use this

Figure 1. Measured well logs: (a) P-wave velocity, (b) S-wave velocity, (c) density, (d) porosity, (e) mineral volumes (quartz in yellow and clay
in green), (f) saturations (gas in red and water in blue), and (g) facies classification. In the first three plots, red curves are the original logs and
blue curves are the logs after Gassmann fluid substitution (brine conditions). In the facies profile, shale is in black, tight sand is brown, and gas
(midporosity) sand is in yellow.
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probability distribution in a Bayesian classification workflow to re-
construct the facies classification at the well location using AVO
properties. We remember that the original log-facies classification
was performed using petrophysical properties. However, the exten-
sion of the log-facies classification to the entire reservoir model de-
pends on the ability of elastic properties (velocities, impedances, or
AVO attributes) to discriminate these facies. As a feasibility study,
we then propose to apply the proposed AVO facies classification at
the well location to reconstruct the facies profile and compare it
with the original log-facies classification. The application consists
of two steps: (1) estimation of the exact probability density function
of AVO attributes conditioned by log facies and (2) Bayesian clas-
sification at the well location.
In general, well logs do not sample all possible geologic scenar-

ios of the reservoir. For example, we can expect that far away from
the well, different lithologies or different saturations could be found.
In the case under study, the well log samples shale and sand layers,

and we can observe that the entire range of porosity is sampled too.
However, the entire clean sand layer (at the top of the reservoir) is
filled by gas. To expand the data set and obtain a more general rep-
resentation of the possible geologic scenarios, we propose to per-
form a preliminary fluid substitution and include into the data set a
new facies, namely, brine sand, representing the same lithology
observable in the main reservoir layer, filled by brine (Avseth et al.,
2005; Mavko et al., 2009; Dvorkin et al., 2014). This facies allows
us to expand the training data set for the feasibility study and will
also be used in the final sensitivity analysis. As a matter of fact, we
will include brine sand in our prior distribution for the Bayesian
classification: Because the brine sand is not sampled by the well,
we should not obtain brine sand in the reconstructed facies classi-
fication even though it is included in the prior distribution. The pre-
liminary fluid substitution is performed using a Gassmann fluid
substitution approach with effective porosity (Dvorkin et al., 2007).
The results of the fluid substitution are shown in Figure 3, in which

Figure 3. Rock-physics templates. (a) P-wave velocity versus porosity of the original logs (in situ condition) color-coded by gas saturation.
(b) P-wave velocity versus porosity of the original logs (in situ condition) color-coded by volume of clay (blue crosses represent data after fluid
substitution) for the interval shown in Figure 1. (c) Wave velocity versus porosity of the original logs and fluid-substituted curves color coded
by facies classification: Shale is in black, tight sand is in brown, gas sand is in yellow, and brine sand is in orange.

Figure 2. Histogram of P-wave velocity, S-wave velocity, and density, color-coded by facies classification (shale is in black, tight sand is in
brown, and gas [midporosity] sand is in yellow).
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we present the distribution of P-wave velocity and porosity,
before and after fluid substitution, and the facies classification
(Figure 3c) of the original well logs and the fluid-substituted
curves (i.e., including brine sand represented by orange facies
in the plot). The facies classification then includes the lithology
and fluid effect: In other words, the discrete classification repre-
sents lithofluid classes. For simplicity, we use the generic term
facies in the following. The well log after fluid substitution (blue
curves) is shown in Figure 1 and compared to the original logs (red
curves). As expected, the P-wave velocity and density increase
when gas is replaced by water, and the S-wave velocity decreases
because of the density effect and because the shear modulus is
not affected by the fluid change. The fluid change is clearly more
visible in the midporosity range (10%–15%) than in the low-
porosity range.
To compute the analytical distribution of AVO attributes, we

should first estimate (or assume) the probability density function
of the input elastic properties: the P- and S-wave velocities and the
density (equation 11). The input data, well logs, and substituted logs
in the elastic domain, are shown in Figure 4, color-coded by facies
classification. The distribution of these data can be mathematically
described by a joint probability density function in a 3D domain
fVP;VS;ρðVP; VS; ρÞ. As described in the “Methodology” section,
different statistical assumptions could be made to describe this dis-
tribution. The most common one, but not necessarily the most ad-
equate, is the Gaussian distribution (equation 12). However, we can
infer from Figure 4 that the distribution of the elastic properties is
not Gaussian because in at least two domains (P-wave velocity ver-
sus density and S-wave velocity versus density), we can observe a
multimodal behavior due to the different elastic response of the vari-
ous facies. For this case study, we believe that a Gaussian mixture
model (equation 13) with as many components as the number of
facies (four in our example) could be more adequate. The Gaussian
and Gaussian mixture probability distributions are parametric dis-
tributions, meaning that their probability density functions can be
represented by a finite number of parameters: two parameters (mean
and covariance matrix) for the Gaussian case and twelve parameters
(four weights, four means, and four covariance matrices) for the
Gaussian mixture case. A nonparametric distribution could be also

assumed. In this case, the distribution must be numerically evalu-
ated; i.e., the values of the probability density function should be
computed at each of the points of the discretized grid in which we
want to evaluate the distribution. There are several methods to es-
timate nonparametric distributions, the most common one being
kernel density estimation, which can be described as a method
to smooth a histogram (1D or multidimensional) using kernel func-
tions (Silverman, 1986). In this application, we used the kernel den-
sity estimation method with Epanechnikov kernel (Doyen, 2007).
To assess the validity of our assumption of a Gaussian mixture
model, a comparison with the Gaussian and nonparametric cases
was performed. We point out that typically elastic properties VP and
VS show a log-normal behavior (see, e.g., the VS distribution in
shale in Figure 2). For this reason, a further improvement would be
the use of log-normal mixture distributions, in which we assume
that the distribution of each property is log normal in each facies.
In other words, we assume that the logarithm of the elastic proper-
ties is Gaussian in each facies. The analytical formulation is then
very similar to the Gaussian mixture case; however, logarithmic/ex-
ponential transformations should be introduced (Papoulis, 1984).
For large depth intervals, this assumption could be more realistic.
In the example under study, the Gaussian mixture distributions
can still provide a realistic description due to the limited thickness
of the layers.
In Figure 5, we show the probability density function of the input

elastic properties fVP ;VS;ρðVP; VS; ρÞ, under the three different as-
sumptions mentioned above. Because the distribution is estimated
in a 3D domain, we show all the projections in the corresponding
2D domains. The entire input data set (well logs and substituted
curves) is plotted on top of the probability distributions for compari-
son. We observe that the Gaussian distribution does not represent
the data distribution as well as the other two statistical models. The
Gaussian mixture model and the nonparametric distribution cor-
rectly describe the multimodal behavior of elastic properties. We
choose the Gaussian mixture model for the analytical tractability
of the distribution.
We then apply equation 14 by assuming as reference values for

the AVO model upper layer the average values of elastic properties
of the shale layer estimated from original well logs. We then esti-

Figure 4. Elastic properties distributions color-coded by facies classification (original logs and fluid-substituted logs): (a) S-wave velocity
versus P-wave velocity, (b) P-wave velocity versus density, and (c) S-wave velocity versus density. The colors are as in Figure 3.
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mate the exact probability density function of the AVO properties
(Figure 6). We point out that output distributions of AVO properties
will be accurate only if the input distributions of the elastic proper-

ties are modeled adequately. The best result in terms of statistical
description of the output is obtained using the Gaussian mixture
assumption.

Figure 5. Joint probability density functions of elastic properties. From left to right: S-wave velocity versus P-wave velocity, P-wave velocity
versus density, and S-wave velocity versus density. The first row shows the Gaussian case, the second row shows the Gaussian mixture case,
and the third row represents the nonparametric case. Data points from well logs are plotted for comparison. The colors of the data points are as
in Figure 3.

Figure 6. Joint probability density functions of AVO properties computed using the analytical formulation. Panel (a) shows the Gaussian case,
panel (b) shows the Gaussian mixture case, and panel (c) represents the nonparametric case. Data points from well logs AVO responses are
plotted for comparison. The colors of the data points are as in Figure 3.
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In Figures 7 and 8, we analyze the results obtained in Figure 6b
for the Gaussian mixture case more in detail. Specifically, in Fig-
ure 7, we show the 1D marginal distribution for each elastic attrib-
ute, component by component. In Figure 8, we show the contours of
the probability density function obtained combining equations 13
and 14 (and shown in Figure 6b). For comparison, we compute

the AVO response of each sample of the well log assuming the same
constant properties for the upper layer as in the analytical estima-
tion. Each component contour matches very well the distribution of
AVO properties computed from the well log.
To verify that what shown is the exact analytical solution, we

compare the result in Figure 8 with the results of Monte Carlo sim-
ulations. For this comparison, we generate N ¼ 400 samples (100
samples for each facies), for the AVO model lower layer, according
to the input distribution of elastic properties. For the upper layer, we
use the same constant properties of shale as in the previous exam-
ples. The histograms of the input 400 samples are shown in Figure 9.
The samples were generated according to a multivariate distribu-
tion; therefore, they are correlated to preserve physical relations be-
tween properties (e.g., the high linear correlation between the P- and
S-wave velocities). We then apply the AVO model. The so-obtained
400 Monte Carlo samples, color-coded by the corresponding facies
classification, are then compared to the exact analytical solution,
showing a very good match.
It is important to notice that the resulting distribution could also

be used to compute the reflection coefficients as a function of the
angle, following a probabilistic approach. In Figure 10, we show the
reflectivity coefficients for a shale/gas-sand interface obtained at the
well location as a function of the incidence angle (black lines) com-
pared to the reflectivity coefficients distribution (background color
lines) obtained combining Shuey’s approximation with the analyti-
cal distribution of the AVO properties. A similar example can be
found in Avseth et al. (2005) in which the authors use a Monte Carlo
approach.
One of the critical assumptions in the first part of this application

is related to the known constant values of the elastic properties of
the overcap shale. If the layer on top of the reservoir is homo-
geneous and well-log data are accurate, this assumption is not a
limitation; however, in many practical applications, these values are
uncertain as well. Moreover, these values could change spatially

Figure 7. Marginal probability density function of elastic proper-
ties, color-coded by facies classification. (a) P-wave velocity distri-
butions, (b) S-wave velocity distributions, and (c) density. The
colors are as in Figure 3: Shale is in black, tight sand is in brown,
gas sand is in yellow, and brine sand is in orange.

Figure 8. Contours of joint probability density functions of AVO properties (shown in Figure 5, 5, and 5), color-coded by facies classification.
Plot (a) shows the entire Gaussian mixture model, and panels (b-e) show the four components of the mixture. Data points from the well logs’
AVO responses are plotted for comparison. The colors of the data points are as in Figure 7.
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away from the well. Here, we propose a sensitivity analysis on the
variability of the values of the elastic properties of the overcap shale
at the well location. We first estimate the distributions of elastic
properties of shale in the well. The distributions are shown in
Figure 7 (black lines). We then select three percentiles to represent
the values of the AVO model upper layer: P10,
P50 (median), and P90, and we run the proposed
methodology for each of these three cases. Case
1 is the base case (P50) shown in Figure 8, case
2 represents the AVO response in which the val-
ues of the overcap shale correspond to the P10 of
the distribution, and case 3 corresponds to the
P90 of the distribution. The results of this sen-
sitivity study are shown in Figure 11.
In the second part of this application, we use

the resulting distribution of the AVO properties
in a Bayesian classification workflow to recon-
struct the facies classification using AVO prop-
erties (equation 15). We remind the reader that
the initial log-facies classification was obtained
using geologic and petrophysical information.
These data are generally not available far away
from the well, where only seismic data can be
acquired. If an elastic inversion is performed,
seismic data can provide a 3D model of elastic
properties, and consequently, AVO properties
can be estimated. The 3D model can be then
used as an input, to extend the facies classifica-
tion to the entire reservoir. This step is generally
not trivial because the resolution of seismic data
is lower than the resolution of well logs and be-
cause the well logs do not sample all geologic
scenarios that could be found in the reservoir.
For these reasons, we also perform a sensitivity
analysis on resolution and prior assumptions.
The first test (case 1) consists of reconstruct-

ing the facies classification from AVO properties assuming the same
number of facies observable at the well and using the actual reso-
lution of well log data. In other words, we compute the AVO proper-
ties from actual well logs; we assume three facies: gas sand, tight
sand, and shale; and we perform the Bayesian facies classification
(Figure 12, case 1). The classification clearly detects the main gas
sand layer and can also detect the tight sand layers on the bottom,
although there are some misclassifications in the interbedded shaley
layers. This classification is a probabilistic classification; therefore,
in addition to the most likely probable facies, we also obtain the
probability curve of each sample. The probability of each sample
of belonging to the three facies is shown Figure 12e. To quantify the
mismatch between the original log facies and the reconstructed fa-
cies, we compile a reconstruction matrix (also called the success
rate matrix; Table 1). The reconstruction matrix is a table in which
we count how many samples are correctly predicted or incorrectly
classified. The table is then normalized by row to obtain the prob-
ability that a reconstructed facies is correctly classified in the correct
log facies. In a perfect classification, we should expect the recon-
struction matrix to be equal to the identity matrix (i.e., 1s on the
diagonal and 0s outside). As previously observed, the main misclas-
sification is between tight sand and shale, whereas gas sand is cor-
rectly classified.

For the second test (case 2), we still use the AVO properties com-
puted from actual well logs, but we include in the prior an additional
facies: brine sand. The results (Figure 12, case 2) are still satisfac-
tory. Some samples are classified as brine sand, but this happens
close to the interfaces between layers. This misclassification could

Figure 9. Comparison of analytical solution and Monte Carlo simulations. Panels (a-
c) show the histograms of theN ¼ 400 samples of the input variables (the P- and S-wave
velocities and density) generated in the Monte Carlo simulations according to the input
distribution (see Figure 7). Panel (d) shows the N ¼ 400 Monte Carlo samples of the
AVO properties, color-coded by the facies classification, compared to the estimated ana-
lytical distribution.

Figure 10. Reflectivity coefficients computed using Shuey’s
approximation as a function of the incidence angle for gas sand.
The black lines represent the reflectivity response of well-log mea-
surements in gas sand (yellow interval in Figure 1), and the colored
lines represent the reflectivity response of 100 samples generated
from the Gaussian component of the analytical solution of the joint
distribution of AVO attributes.

Probabilistic AVO modeling D351

D
ow

nl
oa

de
d 

06
/0

2/
15

 to
 2

.1
39

.1
84

.1
52

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/



then be due to an averaging effect of the measuring tools that aver-
age properties of two different layers with different elastic proper-
ties. The probability curves (Figure 12f) show higher uncertainties

in the probability estimations close to the layer interfaces. The cor-
responding reconstruction matrix is shown in Table 2. For simplic-
ity, we do not show the fourth row that would correspond to actual

Figure 11. Contours of joint probability density functions of the AVO properties for three different cases: In case 1 (base case), elastic proper-
ties in the upper shale layer (overcap) correspond to the P50 of the distribution; in case 2 to, they correspond to the P10; and in case 3, they
correspond to the P90. Panels (a-c) show the AVO response (the contours of the probability distributions) in tight sand, gas sand, and brine
sand.

Figure 12. Facies reconstruction from AVO prop-
erties. Three inversion scenarios are presented:
Case 1, three facies classified from AVO attributes
computed from well log data, case 2, four facies
classified from AVO attributes computed from
well log data and fluid substituted curves; and case
3, four facies classified from AVO attributes com-
puted from well log data and fluid substituted
curves, all filtered at seismic resolution. Panels
(a-d) show the actual log-facies classification
and the most likely facies for each inversion case.
Panels (e-g) show the posterior probability destiny
functions of reconstructed facies for each inversion
case.
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brine sand because there is no brine sand in the log; therefore, the
reconstruction probabilities cannot be computed. The probability of
misclassifying samples increases compared to case 1, but we still
obtain a good result because all three facies have a high recon-
struction rate (0.86, 0.68, and 1, for shale, tight sand, and gas sand,
respectively).
In the third test (case 3), we first filter the well-log data to mimic

the resolution of the inverted seismic attributes using Backus aver-
aging (Backus, 1962), we then compute the AVO properties (at
lower resolution), and we perform the Bayesian classification as-
suming four facies. The probability distribution of AVO attributes
PðR;G;CjπÞ is computed using actual well logs and then evaluated
at the values of the Backus-averaged logs. We point out that this
exercise aims to mimic the resolution of a seismic-attribute data
set; however, it does not assume noise in the data or bias in the in-
version background model. Results are encouraging as shown in
Figure 12 and in Table 3. The probability of misclassifications gen-
erally increases respect to cases 1 and 2, and some mismatches in
terms of the location of the interfaces between layers can be ob-
served in Figure 12g, but the main layers are still detected. The un-
certainty in the facies classification could be underestimated due to
the low resolution of the Backus-averaged well logs. To obtain a
more accurate estimate of the posterior uncertainty, a probabilistic
upscaling approach (Grana and Della Rossa, 2010) could be in-
troduced.
For a complete sensitivity analysis, we should also include the

noise effect and the bias in the inversion background model; how-
ever, the goal of this test is to show how to use the results of the first
part of the application in the Bayesian classification workflow and
show the applicability of these results in a feasibility test. If a seis-
mic data set is available, these results could also be used in a res-
ervoir characterization study to obtain a volume of seismic facies
and the volumes of the corresponding facies probabilities. In this
particular example, the resulting seismic facies classification could
be highly uncertain due to the small thickness of the reservoir,
which is close to the theoretical tuning thickness.

DISCUSSION

The main contribution of this paper is the derivation of an ana-
lytical formulation of the probability distribution of AVO proper-
ties. This distribution can be computed for the entire interval of
interest, as shown in Figure 6, or conditioned by the log-facies clas-
sification, as shown in Figure 8. Although this distribution can be
approximated with Monte Carlo simulations with a very limited
computational cost, we point out that Monte Carlo simulations only
provide a training data set. As a matter of fact, Monte Carlo sim-
ulation is a useful tool to expand the initial data set to obtain a larger
training data set to approximate the probability distribution of the
model response. However, Monte Carlo simulations do not provide
an analytical expression for the corresponding posterior distribu-
tion, which has to be approximated using a known probability
density function. This approximation can introduce an error, for ex-
ample, when a Gaussian distribution is assumed for a non-Gaussian
distribution (in which non-Gaussian could refer to skewed or multi-
modal behaviors).
We emphasize that this formulation only guarantees that the input

uncertainty is correctly propagated; however, if the uncertainty in
the input data is biased, the posterior uncertainty will be biased too.
The input uncertainty often depends on assumptions and is gener-

ally hard to correctly quantify. The probability distribution of the
input random variables can be estimated from actual measurements
or data (well logs or laboratory measurements) or simply assumed
based on geologic information, nearby fields, or theoretical models.
The advantage of deriving an analytical distribution can have an

important impact in different domains. The main application is in
seismic reservoir characterization as shown in Grana (2014). In this
paper, we show another field that could benefit from having the
analytical expression of the likelihood, seismic facies classification.
Although this classification goes beyond the scope of this paper, we
include this example with the double intent of showing the advan-
tage of having an analytical expression of the distribution of AVO
properties instead of an ensemble of Monte Carlo samples and the
uncertainty propagation workflow from a set of continuous proper-
ties to a discrete property. The proposed example shows the uncer-
tainty quantification workflow that should be applied in a facies
classification study. The success of the application of this technique
in seismic reservoir facies classification clearly depends on the
quality of the seismic data, in terms of noise, resolution, tuning
thickness, and knowledge of the background (low-frequency)
model. We point out that in the proposed application, the AVO re-
sponse is computed at the top of the reservoir; however, a similar
methodology could be applied to study the AVO response at the

Table 3. Reconstruction matrix for inversion case 3.

Reconstructed facies

Shale Tight sand Gas sand Brine sand

Actual facies Shale 0.8704 0.0185 0.0309 0.0802

Tight sand 0.0909 0.6591 0.0455 0.2045

Gas sand 0 0 0.9714 0.0286

Table 2. Reconstruction matrix for inversion case 2.

Reconstructed facies

Shale Tight sand Gas sand Brine sand

Actual facies Shale 0.8457 0.0185 0.0309 0.1049

Tight sand 0.0227 0.6818 0.1136 0.1818

Gas sand 0 0 1 0

Table 1. Reconstruction matrix for inversion case 1.

Reconstructed facies

Shale Tight sand Gas sand

Actual facies Shale 0.8951 0.0206 0.0843

Tight sand 0.0279 0.8333 0.1388

Gas sand 0 0 1
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base of the reservoir. In this case, the variables of interest would be
the elastic properties of the upper layer.
The extension of the analytical formulation to the band-limited

case is still challenging due to the complexity of the analytical sol-
ution, which requires the computation of the Jacobian of an integral
form. A hybrid approach could be introduced by combining a Baye-
sian-linearized AVO inversion (Buland and Omre, 2003) with the pro-
posed analytical method. However, the success of the resulting
seismic facies classification would depend on the signal-to-noise ratio
and a sensitivity analysis on the low-frequency model would be nec-
essary to assess how the prior information can affect the classification.

CONCLUSION

In this paper, we present an analytical formulation of a probabi-
listic AVO modeling. The formulation contributes to the correct
propagation of the uncertainty from the elastic domain to the AVO
domain because of the exact solution of the probabilistic problem
that consists of applying a deterministic model such as AVO equa-
tions, to a probability density function, such as the probability dis-
tribution of elastic properties. The formulation can be also extended
to the facies classification modeling and the uncertainty quantifica-
tion problem associated to it. Using a Bayesian workflow in which
the likelihood is obtained from the exact analytical solution of the
probabilistic AVO model, a probabilistic facies classification based
on AVO attributes can be derived. The so-obtained classification
includes the most likely facies profile and the probability distribu-
tions associated to it. The real data set application shows the appli-
cability of the method and includes a comparison with traditional
approaches, such as Monte Carlo simulations, and a comparison of
different statistical assumptions.
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