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ABSTRACT
Time-lapse seismic data are generally used to monitor the changes in dynamic reser-
voir properties such as fluid saturation and pore or effective pressure. Changes
in saturation and pressure due to hydrocarbon production usually cause changes
in the seismic velocities and as a consequence changes in seismic amplitudes and
travel times. This work proposes a new rock physics model to describe the relation
between saturation-pressure changes and seismic changes and a probabilistic work-
flow to quantify the changes in saturation and pressure from time-lapse seismic
changes. In the first part of this work, we propose a new quadratic approximation of
the rock physics model. The novelty of the proposed formulation is that the coeffi-
cients of the model parameters (i.e. the saturation-pressure changes) are functions of
the porosity, initial saturation and initial pressure. The improvements in the results of
the forward model are shown through some illustrative examples. In the second part
of the work, we present a Bayesian inversion approach for saturation-pressure 4D
inversion in which we adopt the new formulation of the rock physics approximation.
The inversion results are validated using synthetic pseudo-logs and a 3D reservoir
model for CO2 sequestration.
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INTRODUCTIO N

During reservoir production, time-lapse seismic data can
be used to monitor reservoir changes by repeatedly acquir-
ing 3D seismic data (Landrø 2001; Lumley 2001; Calvert
2005; Abriel 2008; Thore and Hubans 2012; Bjørlykke 2010;
Lumley et al. 2015; Thore and Blanchard 2015; Mahar-
ramov, Biondi and Meadows 2016). This monitoring method
has been successfully applied in different field cases to in-
directly measure pressure and saturation changes in hydro-
carbon reservoirs and carbon dioxide sequestration stud-
ies (Landrø et al. 2003; Arts et al. 2004; Vedanti and
Sen 2009; Grude, Landrø and Osdal 2013; Blanchard
and Delommot 2015). The estimation of saturation and
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pressure changes from time-lapse seismic data requires the
knowledge of the physical relation that links the dynamic
changes to the seismic changes (Abriel 2008). The changes
in elastic properties can be generally predicted through a rock
physics model and the corresponding changes in the seismic
response are predicted through a wave propagation model
(Avseth, Mukerji and Mavko 2005; Mavko, Mukerji and
Dvorkin 2009; Dvorkin, Gutierrez and Grana 2014).

The saturation effect on seismic velocities can be gen-
erally described by Gassmann’s equation combined with the
mass balance equation for density. In general, if water replaces
hydrocarbon, the density of the saturated rock increases due
to the higher density of water, the P-wave velocity increases
due to the higher bulk modulus of water and the S-wave ve-
locity decreases since the fluid shear modulus is 0 and the
fluid only affects the density in the S-wave velocity expression.
For the pressure effect on seismic velocities, a comprehensive
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relation is still not available, but several empirical equa-
tions have been proposed (Eberhart-Phillips, Han and Zoback
1989; Hofmann et al. 2005; MacBeth 2004; Sayers 2006,
among the others). In general, if effective pressure increases,
the P-wave and S-wave velocity of the rock increase, whereas
the density remains approximately the same. Such increase
is more significant at low effective pressure than high effec-
tive pressure. Indeed, many models are based on exponential
relations that tend to an asymptotical value for large pres-
sure values. Assuming that the effective pressure is defined as
the difference between the overburden pressure and the pore
pressure, similar conclusions can be drawn for pore pressure
changes. If the pore pressure increases, then the velocity gen-
erally decreases. Pore pressure affects the elastic properties of
the fluid, as described by Batzle–Wang relations (Batzle and
Wang 1992), but it is normally a secondary effect compared
to the effect on the saturated rock. Differently from the satu-
ration effect, the calibration of the pressure relations generally
requires a set of laboratory measurements where the dry elastic
moduli are measured at different effective pressure conditions
(Han 1986). The above-introduced rock physics models allow
computing the changes in elastic properties when the initial
and final saturation-pressure conditions are known. The seis-
mic response, in terms of reflectivity, as well as amplitude and
travel-time, can be approximated using a convolutional model
(Aki and Richards 1980; Stolt and Weglein 1985; Buland and
Omre 2003). Many time-lapse inversion studies are performed
in two steps (Buland and El Ouair 2006; Doyen 2007): first
the changes in elastic properties are estimated from time-lapse
seismic data; then, the changes in saturation and pressure are
estimated from the changes in elastic properties estimated in
the first step.

Landrø (2001) presents a rock physics model approxima-
tion that expresses changes in density using a linear approx-
imation in the changes in saturation, and changes in veloc-
ities using an approximation that is linear in the saturation
changes and quadratic in the pressure changes. By combining
this approximation with Aki–Richards linear approximation
of the seismic reflectivity coefficients, Landrø (2001) derives
an approximation of the changes in the reflectivity coeffi-
cients as a polynomial function of the changes in saturation
and pressure. The time-lapse inversion can be solved very effi-
ciently using gradient-based methods. Successful applications
have been proposed for hydrocarbon reservoirs (Landrø et al.

2003) as well as CO2 sequestration studies (Grude et al. 2013).
Other inversion methods such as stochastic optimization al-
gorithms could be applied using the same forward model in
Landrø (2001). An example of stochastic inversion approach

has been proposed in Veire, Borgos and Landrø (2006).
Improvements to this formulation have been subsequently
proposed by Meadows (2001), Trani et al. (2011) and
Bhakta and Landrø (2014). Despite the common use of
the formulation proposed by Landrø (2001), the method
has some limitations. In particular, the approximation does
not depend on porosity and does not depend on the ini-
tial saturation-pressure conditions but only on the property
variations.

In the first part of this work, we propose a new for-
mulation of the changes in reflectivity coefficients based on
saturation-pressure changes. The formulation is inspired by
the work of Landrø (2001), but in the proposed new formula-
tion, the polynomial coefficients are functions of the reservoir
rocks porosity, initial saturation and initial reservoir pressure.
If a static model (before production) of porosity, saturation
and pressure is available, the rock physics model with spatially
varying coefficients can be applied in the time-lapse inversion
workflow.

In the second part of this work, we use the new for-
mulation in a Bayesian inversion scheme for the estima-
tion of saturation-pressure changes from time-lapse seismic
data. Because the proposed formulation is not linear, the
Bayesian formulation presented in Buland and El Ouair (2006)
cannot be applied; therefore, we adopt an ensemble-based
method (Evensen 2009; Emerick and Reynolds 2013). The
goal of introducing an inversion method is to show the ad-
vantages in using the proposed formulation of the porosity-
dependent rock physics model compared to traditional meth-
ods that assume constant porosity and initial reservoir
conditions.

The differences between the traditional models and the
new formulation are shown through illustrative examples
and synthetic pseudo-wells. An example of application in 3D
is shown using a reservoir model for CO2 sequestration.

METHODOLOGY

This section is divided into three parts: review of existing
rock physics models for saturation-pressure changes; new for-
mulation of the rock physics model for saturation-pressure
changes; Bayesian time-lapse inversion method. The first two
parts focus on the forward rock physics model with the goal of
deriving a more accurate approximation for time-lapse stud-
ies for saturation-pressure prediction, whereas the last part
focusses on the inversion with the goal of showing the effect
of the model accuracy on the inversion results.
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Literature review

Rock physics models aim to predict the elastic response of
saturated porous rocks. Most of the available models, such
as empirical relations, granular media models and inclusion
models, are derived for reservoir conditions in which the rock
and fluid parameters are known (Mavko et al. 2009). If the
fluid volumes change, the elastic properties change as well.
Such effect is generally described by Gassmann’s equation.
Similarly, if the effective pressure changes, the elastic prop-
erties change too. Several empirical equations have been pro-
posed to describe the pressure effect such as Eberhart-Phillips
and MacBeth models (Eberhart-Phillips et al. 1989; MacBeth
2004). The associated seismic response can be approximated
using a convolutional model (Aki and Richards 1980).

Landrø (2001) derived a new model to calculate the
changes in velocities, densities and reflection coefficients in
different reservoir conditions as a function of changes in pres-
sure and saturation. The model for velocity changes is a poly-
nomial approximation and it is linear in the saturation changes
and quadratic in the pressure changes; the model for density
changes is linear in the saturation changes and assumes that
such changes are not affected by changes in effective pressure
or that these changes are negligible (a similar assumption was
used and validated in Han 1986; Eberhart-Phillips et al. 1989);
the model for the reflection coefficient changes combines the
previous relations with Aki–Richards linear approximation of
Zoeppritz equation. If we indicate P-wave velocity with α, S-
wave velocity with β and density with ρ, then the model can
be formulated in terms of relative changes of elastic properties
(i.e. the absolute change of the property divided by the initial
value of the property), as follows:

�α

α
= α′ − α

α
= lα�s + mα�p2 + nα�p, (1)

�β

β
= β ′ − β

β
= lβ�s + mβ�p2 + nβ�p, (2)

�ρ

ρ
= ρ ′ − ρ

ρ
= lρ�s, (3)

where α′, β ′ and ρ ′ represent P-wave velocity, S-wave velocity
and density, respectively, for the monitor survey; �α, �β and
�ρ represent the absolute change in P-wave velocity, S-wave
velocity and density, respectively, between the monitor survey
and the baseline survey; �s and �p represent the changes in
water saturation and effective pressure, and lα, lβ , lρ , mα,
mβ , nα and nβ are constant empirical coefficients which
can be estimated from laboratory measurements. By assuming
β̄ ′
ᾱ′ ≈ β̄

ᾱ
as in Landrø (2001; where the symbol .̄ represents the

average value of the property at the interface between upper

and lower layer), the changes in the reflection coefficients can
be then written as

�rpp (θ ) = 1
2

(
lρ�s + lα�s + mα�p2 + nα�p

)
+ 1

2

(
lα�s + mα�p2 + nα�p

)
tan2θ

− 4
β̄2

ᾱ2

(
mβ�p2 + nβ�p

)
sin2θ. (4)

Meadows (2001) modified Landrø’s equation by using a
quadratic approximation for changes in water saturation and
effective pressure as

�α

α
= kα�s2 + lα�s + mα�p2 + nα�p, (5)

�β

β
= kβ�s2 + lβ�s + mβ�p2 + nβ�p, (6)

�ρ

ρ
= kρ�s2 + lρ�s, (7)

where kα, kβ , kρ , lα, lβ , lρ , mα, mβ , nα and nβ are em-
pirical constant values. The expression for the changes in the
reflection coefficients can be derived similar to equation (4).

The assumption behind Landrø’s equations (equa-
tions (1)–(3)) and Meadows’ equations (equations (5)–(7)) is
that the regression coefficients are same everywhere in the
entire reservoir.

Proposed formulation

The main limitation of Landrø’s equations (equations (1)–
(3)) and Meadows’ equations (equations (5)–(7)) is that they
do not account for the porosity of the rock, nor the initial
saturation and pressure, but are only functions of the abso-
lute change. The use of constant empirical values simplifies
the calculations in the inversion approach but it introduces a
limitation because if the equations are calibrated using, for ex-
ample high-porosity rock samples, and the equation is applied
to low-porosity rock samples, it might lead to biased predic-
tions of the elastic and seismic response variations. Similarly,
the equations should also depend on the initial saturation and
pressure values and not only on the absolute changes. Changes
in effective pressure at low effective pressure conditions (e.g.
from 5 to 10 MPa) produce a more significant variation in
elastic properties than changes at high effective pressure (e.g.
from 35 to 40 MPa): indeed, many of the physical models
proposed for the pressure effect assume exponential trends. In
mixtures of gas and water, a small amount of gas (such as 5%
of gas) in a brine-saturated rock causes a large drop in P-wave
velocity, whereas an increase in gas from 5% to 100% causes
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Figure 1 Rock physics relations between relative change in P-wave velocity and water saturation change and comparison of full rock physics
model (black lines), proposed approximation (red lines) and Meadows’ equation (green lines). (a) Water saturation is 0 in the baseline survey and
increases up to 1 in the monitor survey; each line represents different porosity values varying, from top to bottom, from 0.1 to 0.35 respectively.
(b) Porosity is constant and equal to 0.35; each line represents different initial water saturation values varying from 0 to 1.

a small change in P-wave velocity: indeed, the bulk modulus
of a mixture of gas and water is often computed using Reuss
harmonic relation (Mavko et al. 2009).

In this work, we propose a quadratic approximation for
the relative changes of elastic properties in which the approx-
imation coefficients are functions of the reservoir porosity,
initial water saturation and initial effective pressure. To fa-
cilitate the use of the proposed model in time-lapse seismic
inversion, we express the approximation in the logarithm of

the ratio of the properties of the monitor seismic survey and
the properties of the baseline seismic survey in order to com-
bine the proposed formulation with the approximation of the
reflection coefficients proposed by Stolt and Weglein (1985)
and adopted by Buland and El Ouair (2006).

By combining equations (5)–(7) with Aki–Richards ap-
proximation, we can derive the expression for the change in
reflectivity equivalent to equation (4) proposed in Landrø
(2001). The proposed formulation is based on Meadows’

Figure 2 Rock physics relations between relative change in P-wave velocity and effective pressure change, and numerical comparison of full rock
physics model (black lines), proposed model (red lines) and Meadows’ approximation (green lines). (a) Effective pressure is 5 MPa in baseline
survey and increases up to 30MPa in the monitor survey; each line represents different porosity values varying, from top to bottom, from 0.1 to
0.35 respectively. (b) Porosity is constant and equal to 0.35; each line represents different initial effective pressure varying from 10to 35 MPa.
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Time-lapse pressure and saturation changes 5

Figure 3 Illustrative example to study the porosity effect on the relative change of elastic properties assuming a constant water saturation change
and constant effective pressure. (a) Porosity, (b) initial and final saturation, (c) relative change of P-wave velocity, (d) relative change of S-wave
velocity and (e) relative change of density (full rock physics model in black, proposed model in red and Meadows’ equation in green).

relation but the coefficients vary spatially and are functions
of the initial conditions:

ln
α′ (t)
α (t)

= kα (φ, s) �s2 + lα (φ, s) �s + mα (φ, p) �p2

+ nα (φ, p) �p, (8)

ln
β ′ (t)
β (t)

= kβ (φ, s) �s2 + lβ (φ, s) �s + mβ (φ, p) �p2

+ nβ (φ, p) �p, (9)

ln
ρ ′ (t)
ρ (t)

= kρ (φ, s) �s2 + lρ (φ, s) �s, (10)

where for simplicity we indicated the travel-time variable t

but not the spatial variables (x, y), and where α′, β ′ and ρ ′

represent P-wave velocity, S-wave velocity and density, re-
spectively, for the monitor survey; and α, β and ρ represent
P-wave velocity, S-wave velocity and density, respectively, for
the base survey. Instead of using constant values for the coef-
ficients, the parameters kα, kβ , kρ , lα, lβ , lρ , mα, mβ , nα, nβ are
empirical functions of porosity φ, initial water saturation s

and initial effective pressure p, computed by fitting quadratic

regressions to experimental data. For example, the coefficients
for equation (8) are computed as follows:

kα (φ, s) = a2 (s) φ2 + a1 (s) φ + a0, ai = ai,1s + ai,0, (11)

lα (φ, s) = b2 (s) φ2 + b1 (s) φ + b0, bi = bi,1s + bi,0, (12)

mα (φ, s) = c2 (p) φ2 + c1 (p) φ + c0, ci = ci,1 p + ci,0, (13)

nα (φ, s) = d2 (p) φ2 + d1 (p) φ + d0, di = di,1 p + di,0, (14)

for i = 0, 1, 2. Similar expressions can be derived for the
coefficients in equations (9) and (10). The polynomial coef-
ficients in equations (11)–(14) must be calibrated from core
data or well logs.

To show the advantage of using the proposed formulation
compared to the original formulation by Meadows (2001), we
built a synthetic dataset using a rock physics model based on
the stiff-sand model (Dvorkin et al. 2014), Gassmann’s equa-
tion and an empirical relation for pressure. The comparison is
done using the relative changes in P-wave velocity. The dataset
includes rock samples with porosity ranging from 0.10 to 0.35
with different initial saturation and pressure and the P-wave
velocity is computed in different saturation and pressure con-
ditions. Figures 1 and 2 show the comparison between the
actual rock physics model and the approximated models.

C© 2019 European Association of Geoscientists & Engineers, Geophysical Prospecting, 1–17
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Figure 4 Illustrative example to study the effect of initial water saturation on the relative change of elastic properties assuming constant effective
pressure. Legend and colours as in Fig. 3.

In Fig. 1(a), we compute the P-wave velocity assuming
that water saturation is 0 everywhere in the baseline survey
and changes from a minimum of 0 in the baseline survey to
a maximum of 1 in the monitor survey, due to the water
injection (pressure is assumed to be constant). Therefore, the
change in water saturation varies between 0 (no change in

saturation between baseline and monitor survey) and 1
(the entire oil volume present in the baseline survey is fully
replaced by water in the monitor survey). Intermediate
values between 0 and 1 represent partial saturations during
injection. Each sample (black lines) represents a different
rock with porosity equal to 0.1, 0.15, 0.20, 0.25, 0.30 and

Figure 5 Example with synthetic well logs, from left to right. (a) Porosity, (b) water saturation, (c) effective pressure, (d) P-wave velocity, (e)
S-wave velocity and (f) density. Data for the baseline survey are in black, data for the monitor survey are in blue.

C© 2019 European Association of Geoscientists & Engineers, Geophysical Prospecting, 1–17



Time-lapse pressure and saturation changes 7

Figure 6 Numerical comparison of the forward models: full rock physics model (black lines), proposed model (red lines) and Meadows’ equation
(green lines). From left to right: (a) relative change in P-wave velocity, (b) relative change in S-wave velocity, (c) relative change in density,
(d) seismic amplitude differences for the near angle (10°), (e) seismic amplitude differences for the mid angle (20°) and (f) seismic amplitude
differences for the far angle (30°).

0.35. The results show that the change in elastic properties
due to the change in water saturation is different for rocks
with different porosities. Because Meadows’ equation (green

Figure 7 Comparison of the inverted results obtained with the pro-
posed formulation (a) and Meadows’ equation (b). The actual changes
are shown in black, the inverted results using the proposed formula-
tion in red and the inverted results using Meadows’ formulation in
green.

line) does not account for porosity, the approximation can be
computed only for an average value (0.225 in this example);
however, the proposed formulation (red lines) matches the
synthetic dataset with good accuracy.

Figure 1(b) describes the effect of the initial water satura-
tion on the relative change of P-wave velocity: in this example,
porosity is a fixed value equal to 0.35 and different initial wa-
ter saturation values, varying from 0 to 1, are assumed. The
synthetic dataset was computed using the full rock physics
model. Water saturation changes from the two end-point sce-
narios: 100% of oil and 100% of water. If water saturation
in the baseline survey is 1, then water saturation can decrease
down to 0; therefore, the change of water saturation varies
between 0 (no fluid change, meaning that the reservoir is fully
saturated by water at the time of the monitor survey) and
−1 (oil has fully replaced water). If water saturation in the
baseline survey is 0.1, then water saturation can increase up
to 1 because of water injection and production of oil (e.g. in
hydrocarbon reservoirs); therefore, the change in water satu-
ration varies between 0 (no change) and 0.9 (fully saturated by
water, since the initial water saturation was 0.1). Each sample
(black lines) has a different initial water saturation, therefore
the range of the water saturation change is different for each
sample: for example, if the initial water saturation is 0.1, the
maximum change in water saturation is 0.9; if the initial water
saturation is 0.7, the maximum change in water saturation is
0.3. The trends computed using the full rock physics model

C© 2019 European Association of Geoscientists & Engineers, Geophysical Prospecting, 1–17
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Figure 8 Example with synthetic well logs. Legend and colours as in Fig. 5.

can be approximated by the proposed approximation (red
lines) that accounts for the effect of the initial water satura-
tion, whereas Meadows’ equation (green line) only provides
an average value.

Figure 2(a) shows the relation between relative changes
in P-wave velocity and the effective pressure change, assum-
ing that the initial effective pressure in the baseline survey is
5 MPa and it changes from a minimum of 0 to a maximum
of 25 MPa. Each sample (black lines) represents a different
rock with porosity equal to 0.1, 0.15, 0.20, 0.25, 0.30 and
0.35. The approximated model accounting for the porosity
effect (red lines) fits the full rock physics model (black lines).
Figure 2(b) describes the effect of the initial effective pressure
on the relative change of P-wave velocity: in this example,
porosity is a fixed value equal to 0.35 and different initial
effective pressure values, varying from 10 to 35 MPa, are
assumed. For simplicity, in this example, we assume that ef-
fective pressure can only increase and the maximum values
is 60 MPa (for an initial pressure of 35 MPa), but similar
results can be obtained for different initial and final pressure
conditions. The results show that the initial effective pressure
affects the relative change in P-wave velocity with respect to
pressure change. Each sample (black lines) has a different ini-
tial effective pressure, from 10 to 35 MPa, and the change in
pressure varies between 0 to 25 MPa; therefore, for an initial
pressure of 10 MPa, the maximum value is 35 MPa, whereas
for an initial pressure of 35 MPa, the maximum value is
60 MPa. Meadows’ equation (green line) only provides an av-
erage value, whereas the proposed approximation (red lines)

that accounts for the effect of the initial pressure conditions
correctly approximate the measurements simulated using the
full rock physics model.

Bayesian inversion

The model proposed in equations (8)–(14) can be integrated
in many inversion schemes proposed in the geophysics liter-
ature. It could be used with non-linear least square methods
(Dadashpour, Landrø and Kleppe 2008), such as gradient and
conjugate gradient algorithms, as well as probabilistic inver-
sion methods, such as Bayesian inversion (Aster, Borchers and
Thurber 2011; Tarantola 2005). In our approach, we propose
a Bayesian inversion method.

Similar to Buland and El Ouair (2006), we work with the
differences of seismic amplitudes between the baseline seismic
survey and the monitor seismic survey. We use partial stacked
seismic data, and assume that data have been preliminary pro-
cessed according to a standard seismic processing workflow
and each angle stack have been corrected for time shift to
align horizons between base and monitor surveys (using, e.g.
a warping method, as in Hale 2009; Ayeni 2011; Pazetti et al.

2016). The goal of the inversion is to estimate the changes
in saturation and pressure from the seismic amplitudes differ-
ence of time-lapse seismic data (either between the monitor
and baseline surveys or between two repeated monitor sur-
veys). Similar to Buland and El Ouair (2006), the forward
model can be expressed in the following form:

�d = f (�q) + ε = f (g (�m)) + ε, (15)

C© 2019 European Association of Geoscientists & Engineers, Geophysical Prospecting, 1–17



Time-lapse pressure and saturation changes 9

Figure 9 Numerical comparison of the forward models: full rock physics model. Legend and colours as in Fig. 6.

where �d represents the seismic amplitude differences, �q

represents the changes in elastic parameters, �m represents
the changes in saturation and pressure, ε is the error in the
seismic measurements related to the noise in the data, f is the
seismic forward model and g is the rock physics model. In this
work, we focus on pressure and saturation and we assume
that all the other reservoir parameters, such as porosity, do

not change during time. We also assume that systematic er-
rors in the time-lapse seismic data have been corrected in the
processing; therefore, the error term ε is assumed to be dis-
tributed according to a Gaussian function with zero mean and
known standard deviation, as in Buland and El Ouair (2006).

If we adopt a convolutional model for the forward seismic
model for a given survey (e.g. the baseline survey), the seismic

Figure 10 Comparison of the inverted results obtained with the proposed formulation (a) and Meadows’ equation (b). Legend and colours as
in Fig. 7.

C© 2019 European Association of Geoscientists & Engineers, Geophysical Prospecting, 1–17
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data d of the survey can be computed as a linear function
of the reflectivity using a convolution with a known wavelet
as

d = Wrpp + ε, (16)

where W is the matrix associated with the seismic wavelet
and rpp is the weak contrast PP reflectivity computed by Aki–
Richards equation (Aki and Richards 1980; Stolt and Weglein
1985; Buland and Omre 2003):

rpp (t, θ ) = 1
2

(
1 + tan2θ

) ∂

∂t
ln α (t) − 4

β̄2

ᾱ2
sin2θ

∂

∂t
ln β (t)

+ 1
2

(
1 − 4

β̄2

ᾱ2
sin2θ

)
∂

∂t
ln ρ (t) , (17)

where θ is the incident angle.
The same model can be used to predict the seismic data d′

for any repeated monitor seismic survey, measured at a differ-
ent time than the baseline survey. Because the model is linear,
the same convolutional model can be also applied to seis-
mic data difference, if data are preliminary corrected for time
shifts (as in Buland and EI Ouair 2006; Grana and Mukerji
2015). If we indicate the seismic amplitude differences (after
time warping) with �d = d′ − d and we indicate the change
in reflectivity with �rpp, then the time-lapse forward model
can be written as

�d = W�rpp + ε, (18)

where the change of reflectivity �rpp at a given travel-time
sample t:

�rpp (t, θ ) = 1
2

(
1 + tan2θ

) ∂

∂t
ln

α′ (t)
α (t)

− 4
β̄2

ᾱ2
sin2θ

∂

∂t
ln

β ′ (t)
β (t)

+ 1
2

(
1 − 4

β̄2

ᾱ2
sin2θ

)
∂

∂t
ln

ρ ′ (t)
ρ (t)

, (19)

assuming β̄ ′
ᾱ′ ≈ β̄

ᾱ
, as in Landrø (2001).

The rock physics model g in equation (15) can be approx-
imated using the proposed approximation in equations (8)–
(14). By combining equations (8)–(14) with Aki–Richards ap-
proximation in equation (19), we obtain the expression for
the change in reflectivity as

�rpp (t, θ )

= 1
2

(
1 + tan2θ

) ∂

∂t
ln

(
kα (φ, s) �s2

+ lα (φ, s) �s + mα (φ, p) �p2 + nα (φ, p) �p
)

− 4
β̄2

ᾱ2
sin2θ

∂

∂t
ln

(
kβ (φ, s) �s2 + lβ (φ, s) �s

+ mβ (φ, p) �p2 + nβ (φ, p) �p
)

+ 1
2

(
1 − 4

β̄2

ᾱ2
sin2θ

)
∂

∂t

(
kρ (φ, s) �s2 + lρ (φ, s) �s

)
.

(20)

The resulting model is used as the forward model for the
inverse problem in equation (15). Because the inverse prob-
lem is non-linear in the model parameters �s and �p, the
analytical solution proposed in Buland and El Ouair (2006)
is not available and a numerical approach must be adopted.
In our application, the inversion scheme used to solve the in-
verse problem is the ensemble smoother with multiple data
assimilation (Emerick and Reynolds 2013), where an ensem-
ble of several realizations of saturation and pressure changes
is iteratively updated conditioned by the measured time-lapse
seismic amplitudes. Each single Bayesian updating step can be
expressed in the form

�mu
k = �mp

k + Cp
�m�d

(
Cp

�d�d + Cε

) −1
(
�̃dk − �dp

k

)
, (21)

Figure 11 Reservoir properties of the Johansen model before CO2

injection (depth of the baseline survey): (a) porosity, (b) water satu-
ration and (c) effective pressure.
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Figure 12 Two-dimensional section of elastic properties computed using the full rock physics model in depth domain: (a) P-wave velocity
(baseline), (b) P-wave velocity (monitor), (c) absolute P-wave velocity change between baseline and monitor, (d) S-wave velocity (baseline) (e)
S-wave velocity (monitor), (f) absolute S-wave velocity change, (g) density (baseline), (h) density (monitor) and (i) absolute density change.

where k = 1, . . . N represent the ensemble models, the
model parameters are �m = [�s, �p]T, the superscript p

indicates the model at the previous iteration and the super-
script u indicates the updated model, C�m�d represents the
cross-covariance between the model parameters and the data,
C�d�d represents the covariance of the data, Cε is the co-
variance of the error term, �̃dk is a stochastic perturbation
of the measured data (measured seismic differences) and �dk

is the predicted data (predicted amplitude differences). The
Bayesian updating steps is iterated multiple times until con-
vergence (Emerick and Reynolds 2013).

APPLICATIONS

Illustrative examples

To validate the proposed approximation of the forward model
(equations (8)–(14)), we build a set of illustrative examples to
show the limitations of the current approximations and the
improvement provided by the proposed formulation. In these
examples, we change the reservoir conditions (porosity and

initial reservoir conditions) to study its effect on the elastic
response. We show the different reservoir conditions using
pseudo-logs, but we point out that the sequence of samples is
not supposed to mimic realistic logs but idealized situations
in order to analyse the relation between reservoir conditions
and geophysical response. In Fig. 3, we study the effect of
porosity on the relative change of elastic properties assum-
ing a constant water saturation change and constant effective
pressure. In particular, we assume that porosity varies be-
tween 0.35 and 0.1, and that the reservoir at the time of the
baseline survey (black line) is fully saturated with oil whereas
at the time of the monitor survey (blue line) is fully satu-
rated with water. The effective pressure is assumed to be
20 MPa in both surveys. In this example, we compare the
actual data simulated using the full rock physics model (black
lines), the approximated model using the proposed formula-
tion (red lines) and Meadows’ model (green lines). Because
Meadows’ equation does not account for porosity, the rel-
ative change in elastic properties is constant; however, the
proposed formulation correctly approximates the full rock
physics model for different porosity values.
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Figure 13 Two-dimensional section of elastic properties computed using the full rock physics model in time domain. Legend and colours as in
Figure 12.

In Fig. 4, we study the effect of the initial water
saturation assuming constant effective pressure. Indeed, the
velocity relative change is not only function of the change
in water saturation but also of the initial water saturation
value. We assume that porosity is constant and equal to 0.3
and that effective pressure is constant and equal to 20 MPa.
The initial water saturation is equal to 0 in the upper part
(fully oil saturated) and 0.35 in the lower part (partially oil
saturated). The water saturation change is constant and equal
to 0.65; however due to the different initial water saturation,
the water saturation for the monitor survey is equal to 0.65
in the upper part (0.35 of residual oil), and 1 in the lower
part (fully water saturated). Because Meadows’ equation
(green line) is only based on the absolute change of water
saturation, the relative change in elastic properties is constant;
however, the proposed formulation (red lines) approximates
the full rock physics model (black lines) for both saturation
conditions.

Similar conclusions can be drawn by changing both
porosity and initial saturation at the same time and for
effective pressure changes in rock with different porosity

and/or different initial effective pressure. Other rock physics
models can be used (Avseth et al. 2005; Avseth and Skjei
2011; Duffaut, Avseth and Landrø 2011; Avseth, Skjei and
Skålnes 2013) such as the modified grain contact model
(Saul, Lumley and Shragge 2013; Saul and Lumley 2015) or
the patchy cement model (Avseth and Skjei 2011; Avseth,
Skjei and Mavko 2016).

Synthetic examples

To validate the methodology, we created synthetic well logs to
mimic potential pre- and post-production scenario. In the first
scenario (Fig. 5), we created a pseudo-log of porosity using
a geostatistical algorithm, assuming a Gaussian distribution
with mean 0.2 and standard deviation 0.05 and using an expo-
nential variogram model to ensure the spatial continuity. The
water saturation is assumed to be 0 in the entire interval (fully
oil saturated) at the time of the baseline survey and 1 in the en-
tire interval (fully water saturated) at the time of the monitor
survey. Effective pressure is assumed to be constant and equal
to 20 MPa. The elastic properties, that is, P-wave velocity,
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Figure 14 Synthetic time-lapse seismic data: (a) near angle (baseline), (b) near angle (monitor), (c) seismic amplitude differences for the near
angle after warping, (d) mid-angle (baseline), (e) mid-angle (monitor), (f) seismic amplitude differences for the mid-angle, (g) far angle (baseline);
(h) far angle (monitor) and (i) seismic amplitude differences for the far angle.

S-wave velocity and density, are computed using the stiff-
sand model, Gassmann’s equation and the density equation;
the simulated data are shown in Fig. 5: the simulated data cor-
responding to the baseline survey are shown in black and the
data for the monitor survey in blue. The corresponding rela-
tive changes in elastic properties and seismic data are shown in
Fig. 6. The proposed approximated model matches the pre-
dicted changes; however, Meadows’ equation predicts a con-
stant value since the model does not depend on porosity
and the water saturation is constant. The inverted results
are shown in Fig. 7: the inverted results derived from the
proposed model can correctly predict the water saturation
change, whereas the inverted results from Meadows’ equation
mismatch the change in water saturation. Indeed, the errors in
the prediction of water saturation correlate with the porosity
log.

The second scenario (Fig. 8) represents a partially satu-
rated reservoir with variable porosity and different effective
pressure values ranging from 5 to 20 MPa at different depths.
The initial water saturation was generated using a geostatis-
tical algorithm assuming a Gaussian distribution with mean

0.5 and standard deviation 0.2 and using an exponential var-
iogram. We assume that water injection took place in the
well and that at the time of the monitor survey the reservoir
is fully saturated by water and the pressure is constant and
equal to 35 MPa in the entire interval. The relative changes
of elastic properties and the corresponding seismic response
are shown in Fig. 9. The results of the inversion are shown in
Fig. 10. The forward and inverse models obtained using the
proposed formulation allow obtaining a better result com-
pared to Meadows’ equation.

Field example

We finally apply the method to a synthetic seismic dataset gen-
erated from a reservoir model of the Johansen field located in
Norway (Eigestad et al. 2009). The Johansen formation is a
potential CO2 storage site. The geo-cellular model including
the reservoir and the sealing layers are made by 10 layers.
Figure 11 shows porosity, water saturation and effective pres-
sure for the pre-injection static model. The model includes
over-cap layers of shale at the top, and a mid-to-high porosity
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Figure 15 Comparison between the actual saturation-pressure changes and the estimated results. Top plots show water saturation and bottom
plots show effective pressure: (a) actual water saturation change, (b) prior water saturation change, (c) predicted water saturation change, (d)
actual effective pressure change, (e) prior effective pressure change and (f) predicted effective pressure change.

sandstone layer. We created a synthetic dataset by simulat-
ing CO2 injection for 10 years using the Matlab Reservoir
Simulation Toolbox for fluid flow simulation, and we com-
puted a baseline survey (year 1) and a monitor survey (year
10). The synthetic dataset was computed using a convolu-
tional model and a time-shift correction was applied to the
monitor survey. The synthetic model is shown along a 2D
section through the well location: the elastic properties com-
puted using the full rock physics in depth domain are shown in
Fig. 12, the elastic properties in time domain (sampling rate of
4 milliseconds) are shown in Fig. 13, and the seismic data are
shown in Fig. 14. The N = 100 initial models of saturation
and pressure in the ensemble were generated using geostatisti-
cal simulations (Doyen 2007); the average of the simulations
is non-informative and assumes almost constant changes in
the reservoir. The inversion results data are obtained using
the approximated model proposed in the ’Methodology’ sec-
tion and the Bayesian inversion method based on the ensemble
smoother algorithm. The inverted results are computed as the
average of the 100 updated models of saturation and pres-
sure in the ensemble. The results are shown in time domain in
Fig. 15 and satisfactorily match the data.

D I S C U S S I O N

This work presents an improvement of the approximated
model to compute elastic and seismic changes (in terms of
relative change of P-wave velocity, S-wave velocity, density

and reflectivity) due to changes in saturation and pressure.
For reservoirs with unknown initial conditions, an average
value of porosity can be assumed; in this scenario, the pro-
posed approximation is equivalent to Meadow’s equation, but
for spatially variable reservoir conditions (i.e. different values
in different locations of the reservoir) the proposed model
is more accurate than linear and quadratic approximations
proposed in the literature. The presented model can be used
in time-lapse seismic inversion studies where the solution (i.e.
the saturation-pressure changes) is computed directly from the
changes in seismic amplitudes, as in Landrø (2001); however,
the improved accuracy of the proposed model allows reducing
the propagation of the errors due to the approximation of the
forward physical operator to the solution of the inverse prob-
lem. In our work, we presented a quadratic approximation
consistent with Meadows’ equation, but theoretically a larger
order polynomial could be used. The estimation of the coeffi-
cients of the quadratic expansion can be obtained by solving
a non-linear least square problem to fit the values of well log
data and core samples. Generally, the estimation of the co-
efficients for the water saturation change is easier than for
pressure, since the model can be fitted using well logs before
and after Gassmann’s fluid substitution, whereas the pressure
effect requires a set of laboratory measurements with veloc-
ities measured at different effective pressure conditions. The
so-obtained model can be used for time-lapse seismic inver-
sion in any inverse theory algorithm. In our work, we chose a
probabilistic approach similar to Buland and El Ouair (2006).
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However, the proposed formulation is quadratic; therefore,
the analytical solution of the Bayesian inverse problem is not
available. The main limitation of the proposed inversion is that
it requires a pre-processing of the data to correct the monitor
survey(s) for time shift. Time-shift information is very valu-
able for 4D seismic studies and its integration in the inversion
workflow would improve the model predictions and reduce
the prediction uncertainty; however, it is beyond the scope of
this work. Furthermore, in this work, we assumed that poros-
ity is variable in space, but constant in time; additional work
to include the compaction effect is needed and could be de-
veloped using the formulations based on the dilation factor
proposed by Røste, Stovas and Landrø (2006), Carcione et al.

(2007) and Landrø (2015).
The proposed formulation and its utilization in Bayesian

inversion allow improving the reservoir characterization as
well as the ability to use time-lapse seismic data to monitor
reservoir changes of dynamic properties including pressure
and saturation. The implementation of the proposed method
is beneficial not only for reservoir monitoring studies using
time-lapse seismic but also for history matching problems
(Oliver, Reynolds and Liu 2008). The integration of seis-
mic data in history matching studies is challenging due to
the large amount of data as well as the low resolution and
low signal-to-noise ratio of the data; however, the application
of the proposed methodology allows identifying the location
of the fluid front as well as reservoir compartments with high
and low effective pressure. Generally, seismic history match-
ing problems include production data and elastic properties
inverted from time-lapse seismic data (Huang, Meister and
Workman 1997; Gosselin et al. 2003; Dong and Oliver 2005;
Oliver and Chen 2011); however, the results of the proposed
method allow directly integrating pressure and saturation in
the seismic history matching workflow, which would allow
solving the seismic history matching problem by adopting a
parameterization (saturation and pressure) consistent with the
fluid flow simulation.

CONCLUSIONS

We presented a methodology for the estimation and inversion
of elastic and seismic property changes due to the changes in
water saturation and effective pressure. The proposed model
approximated the physics that describes how the elastic and
seismic response of a sequence of porous rocks is affected
by variations of water content and pressure conditions. The
proposed formulation depends on the porosity of the rock,
initial water saturation and initial effective pressure, and

provides an improvement compared to traditional approx-
imations applied in time-lapse studies such as Landrø and
Meadows’ equations. The so-obtained formulation allows
computing the change in reflectivity between two seismic
surveys directly from the changes in water saturation and
pressure and can be integrated in time-lapse seismic inversion
studies through any inverse theory algorithm. In our work,
we propose a Bayesian non-linear inversion algorithm based
on the ensemble smoother multi-data assimilation to estimate
the saturation-pressure changes given the difference in seismic
amplitudes between two seismic surveys, after the preliminary
warping process for the correction of the time shift. The
validation through illustrative examples, synthetic well logs
and a 3D reservoir model for CO2 sequestration shows the
improvement of the proposed forward model compared
to traditional approximations and the inversion problem
results.
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