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ABSTRACT

The estimation of rock and fluid properties from seismic
attributes is an inverse problem. Rock-physics modeling
provides physical relations to link elastic and petrophysical
variables. Most of these models are nonlinear; therefore, the
inversion generally requires complex iterative optimization
algorithms to estimate the reservoir model of petrophysical
properties. We have developed a new approach based on
the linearization of the rock-physics forward model using
first-order Taylor series approximations. The mathematical
method adopted for the inversion is the Bayesian approach
previously applied successfully to amplitude variation with
offset linearized inversion. We developed the analytical for-
mulation of the linearized rock-physics relations for three
different models: empirical, granular media, and inclusion
models, and we derived the formulation of the Bayesian
rock-physics inversion under Gaussian assumptions for the
prior distribution of the model. The application of the inver-
sion to real data sets delivers accurate results. The main ad-
vantage of this method is the small computational cost due to
the analytical solution given by the linearization and the
Bayesian Gaussian approach.

INTRODUCTION

In seismic reservoir characterization, the estimation of rock and
fluid properties is generally achieved in two steps: seismic inversion
and petrophysical (or rock-physics) inversion. In seismic inversion
or elastic inversion (Russell, 1988), we invert the seismic data sets,
i.e., amplitudes for different angle stacks, to estimate the elastic
model, i.e., a 3D model of elastic attributes, such as P- and S-imped-
ances, density, P- and S-wave velocities, and all the related seismic
attributes. Seismic inversion can be performed using complex for-
ward models and inverse algorithms, for example, full-waveform
inversion and stochastic optimization, or using methods that are less

computationally intense, such as seismic convolution and least-
squares inversion. In petrophysical inversion (Doyen, 2007), we
invert the seismic attributes obtained from seismic inversion to es-
timate a model of petrophysical properties, such as porosity, clay
volume, and possibly fluid saturations. The petrophysical inversion
requires a rock-physics model to link elastic and petrophysical
properties (Mavko et al., 2009). This model is generally calibrated
at the well location using well logs and/or laboratory measurements
of core samples. The rock-physics model adopted in the inversion
generally depends on the geologic environment. Granular media
models based on Hertz-Mindlin contact theory are generally applied
in reservoir with sand and shale formations, whereas inclusion mod-
els are often used in carbonate reservoirs (Avseth et al., 2005;
Mavko et al., 2009; Dvorkin et al., 2014). If enough calibration
data are available, empirical models such as the Han, Wyllie,
and Raymer equations can be used as well. Most of the rock-physics
models are generally nonlinear, except for the multilinear regres-
sions proposed by Han (1986) for a data set in the Gulf of Mexico.
Therefore, the inversion method requires nonlinear optimization al-
gorithms, such as gradient-based methods, or stochastic optimiza-
tion algorithms, such as genetic algorithms and simulated annealing
(Doyen, 2007; Aster et al., 2011; Sen and Stoffa, 2013). Probabi-
listic approaches, such as Monte Carlo methods can be applied as
well. One of the main advantages of a probabilistic approach is the
assessment of the model uncertainty through the posterior distribu-
tion. However, the nonlinearity of the rock-physics model does not
allow us to derive an analytical formulation for the posterior distri-
bution of the petrophysical properties and requires the numerical
estimation of the probability density function at each location of
the reservoir.
Avery common approach in inverse theory is Bayesian inversion,

in which the prior distribution of the model is combined with the
likelihood to observe the data given the model. In Bayesian inver-
sion, if the forward model (hence the likelihood) is linear, the prior
distribution is Gaussian, and the additive error term is Gaussian and
independent of the model, then, the posterior distribution of the
model given the measured data is also Gaussian, and the expres-
sions for the conditional mean and conditional covariance matrix
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can be analytically derived (Tarantola, 2005). If the analytical
solution is available, the computational cost of the inversion is very
limited, compared with iterative optimization methods that require
several evaluations of the objective function. Furthermore, the
Gaussian assumption guaranties that the obtained solution mini-
mizes the error in the least-square sense or l2-norm (Tarantola,
2005).
In seismic inversion, Bayesian methods have been successfully

applied for linearized seismic models, such as linearized amplitude
variation with offset (AVO) inversion. Buland and Omre (2003) pro-
vide a seismic inversion algorithm based on the convolution (linear
operator) of the wavelet and a linearized approximation of Zoep-
pritz equations (Aki and Richards, 1980). This method was also
extended to time-lapse seismic inversion (Buland and El Ouair,
2006), Dix inversion (Buland et al., 2011), and CSEM inversion
(Buland and Kolbjørnsen, 2012). The flexibility of the Bayesian
approach also allows including a spatial model as in Buland et al.
(2003) and Hansen et al. (2006). Furthermore, an unobservable dis-
crete variable representing the lithofacies can be incorporated in the
inversion as well (Larsen et al., 2006; Buland et al., 2008; Rimstad
and Omre, 2010; Ulvmoen and Omre, 2010). Statistical sampling
from the posterior distributions can be obtained by introducing a
spatial correlation function in the inversion, or by combining the
inversion results with more sophisticated geostatistical methods
(Hansen et al., 2006; Doyen, 2007). Other statistical approaches
have been presented by Mukerji et al. (2001), Mazzotti and Zam-
boni (2003), Eidsvik et al. (2004), Bornard et al. (2005), Coléou
et al. (2005), Bachrach (2006), Gunning and Glinsky (2007), Spikes
et al. (2007), González et al. (2008), Bosch et al. (2009), and Jo-
hansen et al. (2013). The Gaussian assumption is not necessarily
required to achieve an analytical solution. Indeed, Grana and Della
Rossa (2010) and Rimstad and Omre (2010) extend the Bayesian
approach to Gaussian-mixture and generalized-Gaussian models,
respectively. The main limitation of the applicability of the analyti-
cal Bayesian formulation to the rock-physics domain is the
assumption that the model is linear. Bayesian approaches using non-
parametric distributions and nonlinear models (e.g., based on kernel
density estimation), have been proposed by Doyen (2007) for dis-
crete properties (facies or lithofluid classes) and Grana and Della
Rossa (2010) for petrophysical properties. However, the numerical
evaluation of the posterior increases the computational cost, and the
sampling algorithms are generally computationally demanding.
In this work, we propose to derive a linearization of the rock-

physics model using first-order Taylor series approximations (Stew-
art, 2015). Using the proposed linearization and assuming a Gaus-
sian prior model for the petrophysical properties, the solution of the
inverse problem is represented by a Gaussian posterior distribution
with explicit expressions for the posterior mean and covariance ma-
trix. Analytical expressions for the confidence intervals are also
available. This approach is valid for linear and almost linear rock-
physics models. If the rock-physics model is strongly nonlinear,
a piecewise linearization might be applicable. Otherwise, the pro-
posed linearized approach cannot be applied, and a numerical evalu-
ation of the posterior probability distribution is required.
Different from seismic inversion, in rock-physics inversion,

the forward model depends on the rock type (Avseth et al., 2005;
Mavko et al., 2009; Dvorkin et al., 2014). Several models are avail-
able in literature for different rock types. We can divide the models
in three main categories: empirical, granular media, and inclusion

models. For each category, we chose a specific model and derived
the linearized Taylor approximation. In this work, we present the
linearization of Raymer’s equation, Dvorkin’s stiff sand model,
and the Kuster-Toksöz inclusion model (Mavko et al., 2009). We
then present the analytical formulation of the posterior distribution
of the Bayesian linearized rock-physics inversion. The accuracy of
the inversion depends on the accuracy of the linearization of the
rock-physics model. Although many rock-physics models are non-
linear, in the interval of interest (porosity between 0 and 0.5, mineral
volumes and saturations between 0 and 1), these models are gen-
erally almost linear, and the linearization provides accurate approx-
imations. Therefore, if the actual rock-physics model provides
accurate elastic predictions (e.g., a good match of the sonic logs),
then the linearization also provides good predictions. Three differ-
ent applications are presented to illustrate the applicability of the
method and the accuracy of the results.

METHODOLOGY

The inverse problem under study is the rock-physics inverse
problem, i.e., the estimation of rock and fluid properties from seis-
mic attributes. Examples of rock-physics inverse problems are the
estimation of porosity and clay volume from P- and S-wave veloc-
ities in a clastic reservoir, or the estimation of porosity and water
saturation from P-impedance and Poisson’s ratio. If large offsets are
available, and the density estimation from seismic data is reliable,
then density could also be used as an input variable in the rock-
physics inversion workflow.
In general, from a mathematical point of view, an inverse problem

can be written in the form

d ¼ fðmÞ þ e; (1)

where d represents the measured data at a given location, m is the
model to be estimated, f is the physical relation that links the model
to the data (the rock-physics model, in our case), and e is the meas-
urement error associated with the data. We often assume the error to
be Gaussian with zero mean and known standard deviation. In gen-
eral, the error can follow any distribution, have nonzero mean, and
be spatially correlated. For simplicity, we first assume that the var-
iables are scalar and then extend the approach to the multivariate
domain. For example, we can assume that d represents P-wave
velocity, m is the porosity, and the rock-physics model is Raymer’s
equation.
The inverse problem in equation 1 is nonlinear because of the

nonlinearity of the physical relation f. We then introduce a lineari-
zation based on the Taylor series expansion (Stewart, 2015). Taylor
series expansions aim to approximate an arbitrary function at a
given value of the independent variable using a polynomial in which
the coefficients depend on the derivatives of the function. To cor-
rectly approximate the function, the series might contain infinite
terms; however, for simple functions, a good approximation can
be achieved using a limited number of terms. Taylor series are com-
monly used to study the behavior of numerical approximations to
differential equations (Hörmander, 1990). For example, the forward
Euler formula (Atkinson, 1989) corresponds to truncate the Taylor
series after the second term. Taylor series have been previously used
in geophysics to approximate complex nonlinear functions, espe-
cially in seismic imaging (see, e.g., Ursin and Stovas, 2006). In
our approach, we are interested in linear approximations of rock-
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physics models; therefore, the Taylor series expansion of the rock-
physics equation is truncated after the first term. For the problem in
equation 1, the first-order approximation is given by

d ≅ fðm0Þ þ f 0ðm0Þðm −m0Þ þ e; (2)

where f 0 is the first derivative of the function f and m0 is a value of
the independent variable m. In our application to inverse problems,
we choose m0 as the mean of the property. Given the limited range
of the properties of interest in rock-physics inversion (porosity, min-
eral volumes, and fluid saturations), and the almost linear behavior
of rock-physics models, this choice is not a limitation in many ap-
plications.
If we rearrange the terms in equation 2, then, we can reformulate

the inverse problem as a linear inverse problem:

d ≅ f 0ðm0Þmþ ðfðm0Þ −m0f 0ðm0ÞÞ þ e ¼ gmþ bþ e:

(3)

We now generalize this approach to a multivariate domain, in
which the properties of interest (the data d and the model m)
are vectors of several variables. For example, d could represent
P- and S-wave velocities and density and m could represent poros-
ity, clay volume, and water saturation. By adopting a vector notation
and applying a rock-physics model f , the inverse problem can be
written as

d ¼ fðmÞ þ e (4)

The first-order Taylor series approximation is then

d ≅ fðm0Þ þ Jm0
ðm −m0Þ þ e; (5)

where Jm0
is the Jacobian of the function f evaluated at the point

m0. The linearized inverse problem can then be rewritten as

d ≅ Jm0
mþ ðfðm0Þ − Jm0

m0Þ þ e ¼ Gmþ bþ e: (6)

The additive constant b in equation 6 can be subtracted from the
data d, and the linear inverse problem can be written in the common
form

d − b ¼ ~d ¼ Gmþ e: (7)

If the rock-physics model can be written in the linear form as in
equation 7, then the solution of the inverse problem can be obtained,
in a Bayesian setting, with a relatively small computational cost.
If we assume that the modelm is distributed according to a Gaus-

sian distribution Nðm; μm;ΣmÞ, the error is Gaussian with zero
mean and covariance matrix Σe, and the operator f is linear (with
associated matrix G), then the posterior distribution pðmjdÞ is
also Gaussian Nðm; μmjd;ΣmjdÞ and it can be analytically estimated
through the following expressions for the conditional mean:

μmjd ¼ μm þ ΣmGTðGΣmGT þ ΣeÞ−1ð ~d −GμmÞ; (8)

and for the conditional variance

Σmjd ¼ Σm − ΣmGTðGΣmGT þ ΣeÞ−1GΣm: (9)

The mathematical derivation of these expressions can be found
in Tarantola (2005). The Bayesian approach can be extended to lin-
ear combinations of Gaussian distributions, i.e., Gaussian mixture
models (Grana and Della Rossa, 2010). In the Gaussian mixture
approach, we assume that a facies classification is available and that
the prior model is a facies-dependent Gaussian distribution. The
equations for the posterior mean and covariance matrix are the same
as in equations 8 and 9, but the prior parameters μm and Σm are
facies dependent. The likelihood function, i.e., linear operator G,
can be either invariant or facies dependent. Rimstad and Omre
(2010) also extend the analytical formulation, for seismic inversion,
to generalized Gaussian models for analytical treatment of skewed
distributions.
We point out that some empirical rock-physics models, such as

Han’s relations, are linear. Indeed, we can estimate the elastic attrib-
utes (velocities VP, VS and density ρ) as a function of petrophysical
properties (porosity ϕ, clay volume C, and water saturation Sw) us-
ing a multilinear regression

8<
:

VP ¼ αPϕþ βPCþ γPSw þ δP;
VS ¼ αSϕþ βSCþ γSSw þ δS;
ρ ¼ αRϕþ βRCþ γRSw þ δR;

(10)

and rewrite the rock-physics model in the matrix form

2
4VP

VS

ρ

3
5 ¼

2
4 αP βP γP
αS βS γS
αR βR γR

3
5
2
4 ϕ

C
Sw

3
5þ

2
4 δP
δS
δR

3
5: (11)

This case does not require any additional linearization. In the fol-
lowing, we show how to linearize some common rock-physics mod-
els: the Raymer et al. (1980) model, the Dvorkin et al. (1994) stiff
sand model, and the Kuster and Toksöz (1974) inclusion model.

Linearized Raymer model

Raymer proposes to estimate P-wave velocity VP as a quadratic
function of porosity ϕ (Raymer et al., 1980). Raymer’s equation
depends on the P-wave velocity of the solid phase VP;mat and the
P-wave velocity of the fluid phase VP;fl, which depend, respectively,
on the clay volume C (assuming a mixture of quartz and clay) and
the water saturation Sw (assuming a mixture of brine and hydrocar-
bon). Dvorkin later extends Raymer’s model to S-wave velocity
prediction as a function of porosity ϕ, S-wave velocity in the solid
phase VS;mat; and density ρ (Dvorkin, 2008). Finally, density can
be computed as a linear average of porosity in which the coefficients
depend on the density of the solid phase ρmat and the density of the
fluid phase ρfl. By combining Raymer, Raymer-Dvorkin, and the
density equation, we obtain a system of three equations in three
unknowns (porosity ϕ, clay volume C, and water saturation Sw)8><

>:
VP ¼ ð1 − ϕÞ2VP;mat þ ϕVP;fl;

VS ¼ ð1 − ϕÞ2VS;mat

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−ϕÞρmat

ρ

q
;

ρ ¼ ð1 − ϕÞρmat þ ϕρfl;

(12)

where
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ρmat ¼ ρcCþ ρqð1 − CÞ; (13)

ρfl ¼ ρwSw þ ρhcð1 − SwÞ; (14)

VP;mat ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kmat þ 4

3
Gmat

ρmat

s
; (15)

VS;mat ¼
ffiffiffiffiffiffiffiffiffi
Gmat

ρmat

s
; (16)

VP;fl ¼
ffiffiffiffiffiffi
Kfl

ρfl

s
; (17)

and

Kmat ¼
ðCKc þ ð1 − CÞKqÞ þ

�
1

C∕Kcþð1−CÞ∕Kq

�
2

; (18)

Gmat ¼
ðCGc þ ð1 − CÞGqÞ þ

�
1

C∕Gcþð1−CÞ∕Gq

�
2

; (19)

Kfl ¼ SwKw þ ð1 − SwÞKhc; (20)

where K and G are the bulk and shear moduli, respectively. The
subscript hc indicates hydrocarbon (oil or gas), w indicates water,
c indicates clay, and q indicates quartz. In particular, the densities of
solid and fluid are computed as a weighted average of the mineral
and fluid components (equations 13 and 14), the P- and S-wave
velocities of the solid phase are computed using the Voigt-Re-
uss-Hill average for the solid bulk and shear moduli (equations 18
and 19), and the velocity of the fluid phase is computed using the
Voigt average for the fluid bulk modulus (equation 20). The Voigt
average for the fluid mixture is generally suitable for patchy satu-
ration systems; alternatively, Brie’s relation could be used as well
(Mavko et al., 2009). If the fluid mixture is homogeneous, the Reuss
average should be used:

Kfl ¼
1

Sw∕Kw þ ð1 − SwÞ∕Khc
: (21)

To derive the linearization of the rock-physics model in equation 12,
we first compute the Jacobian

Jðϕ; C; SwÞ ¼

2
664

∂VP

∂ϕ
∂VP

∂C
∂VP

∂Sw
∂VS

∂ϕ
∂VS

∂C
∂VS

∂Sw
∂ρ
∂ϕ

∂ρ
∂C

∂ρ
∂Sw

3
775: (22)

The partial derivatives are shown in Appendix A. To obtain the
linearization of the rock-physics model in equation 12, we evaluate

the Jacobian of the function (Appendix A) at a given point of the
model space, for example, m0 ¼ ½μϕ; μC; μSw � with μ being the var-
iable mean; we evaluate the rock-physics model (equation 12)
at the same point m0; and we derive the first-order Taylor series
approximation as in equation 6. In Figure 1, we show the compari-
son between the exact rock-physics model and the linearized
approximation. To compute the actual model, we assumed two
mineral components, clay and quartz, and two fluid components,
oil and water, and the following parameters: Kc ¼ 21 GPa,
Gc ¼ 15 GPa, ρc ¼ 2.45 g∕cm3, Kq ¼ 36 GPa, Gq ¼ 36 GPa,
ρq¼2.65 g∕cm3, Khc¼0.8GPa, ρhc¼0.6 g∕cm3, Kw¼2.25GPa,
and ρw ¼ 1.03 g∕cm3. In this example, we assume a patchy fluid
mixture (equation 20). In Figure 1a and 1b, we notice that the lin-
earized model approximates the rock-physics model very well for
intermediate porosities but tends to underestimate the model for
low- and high-porosity values. When the model is extended to
the entire reservoir, the mismatch could lead to misclassifications.
To improve the approximate model, we propose a piece-wise lin-
earized model. We first define a set of lithologic facies and then
compute the model linearization in each facies. In this example,
for simplicity, we define three facies: low-porosity (corresponding
to the porosity interval [0–0.1]), mid-porosity (interval [0.1–0.2]),
and high-porosity facies (interval [0.2–0.3]). In real studies, facies
might be defined based on multiple properties (for example, poros-
ity and clay volume) and sedimentological models.
The piecewise linearized model is shown in Figure 2a and 2b

shows an improvement of the approximation for low and high
porosity values. Figure 2c and 2d also illustrates a case in which
the linearization might fail. The mineralogical model is the same
as in Figure 1, but the fluid mixture is a homogeneous mixture
of gas (Khc ¼ 0.1 GPa, ρhc ¼ 0.1 g∕cm3) and water. The velocity
of the fluid phase in the Raymer equation is then computed using
the Reuss average (equation 21). The harmonic average for the fluid
bulk modulus introduces a nonlinearity in the rock-physics model
and the linearization fails for high values of water saturation. In-
deed, a small amount of gas results in a large decrease in the P-wave
velocity, whereas a further increase in gas saturation has smaller
effects. Therefore, in such a situation, a linearized inversion might
introduce misclassifications of the fluid content in the reservoir.

Linearized stiff sand model

The stiff sand model is based on Hertz-Mindlin equations and the
modified Hashin-Shtrikman upper bounds (Dvorkin et al., 2014).
Hertz-Mindlin grain-contact theory provides an estimation of the
bulk and shear moduli of a dry rock, under the assumption that
the rock frame is a random pack of spherical grains, subject to
an effective pressure Pe, with a given porosity ϕc, and an average
number of contacts per grain n (coordination number). In the stiff
sand model, Hertz-Mindlin equations are used to compute the val-
ues of the dry-rock elastic moduli KHM and GHM at the critical
porosity ϕc. The values of the elastic moduli of the solid phase
Kmat and Gmat (i.e., the elastic moduli at zero porosity) can be com-
puted using Voigt-Reuss-Hill average. The stiff sand model pro-
vides an estimate of the dry-rock elastic moluli, Kdry and Gdry,
for all the porosity values within the porosity range ½0;ϕc� by in-
terpolating the elastic moduli at zero porosity (Kmat and Gmat) and
the elastic moduli at the critical porosity (KHM and GHM) using the
modified Hashin-Shtrikman upper bounds (Dvorkin et al., 2014):
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Kdry ¼
�

ϕ∕ϕc

KHM þ 4∕3Gmat

þ 1 − ϕ∕ϕc

Kmat þ 4∕3Gmat

�
−1

−
4

3
Gmat;

(23)

Gdry ¼
�

ϕ∕ϕc

GHM þ ξ
þ 1 − ϕ∕ϕc

Gmat þ ξ

�
−1

− ξ; (24)

where

ξ ¼ 1

6
Gmat

9Kmat þ 8Gmat

Kmat þ 2Gmat

: (25)

To include the fluid effect, we combine the stiff sand model with
Gassmann’s equations and obtain the saturated-rock elastic moduli
Ksat and Gsat. According to Gassmann’s equations, the saturated-
rock bulk modulus Ksat is a function of porosity, rock and fluid elas-
tic moduli, and dry-rock bulk modulus Kdry, whereas the saturated-
rock shear modulus Gsat is equal to the dry-rock shear modulus
Gdry. For the fluid bulk modulus, we assume the Voigt average
as in the previous model (equation 20). Finally, velocities VP

and VS are computed as a function of the elastic moduli and density:

VP ¼
ffiffiffiffiffiffiffiffiffi
Msat

ρ

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ksat þ 4∕3Gsat

ρ

s
; (26)

VS ¼
ffiffiffiffiffiffiffiffi
Gsat

ρ

s
; (27)

where Msat ¼ Ksat þ 4∕3Gsat is the compressional modulus of the
saturated rock and ρ ¼ ð1 − ϕÞρmat þ ϕρfl is the density.
The challenge of the linearization of the stiff sand model is in the

computation of the derivatives to form the Jacobian. In the follow-
ing, we assume that the clay volume is constant; therefore,Kmat and
Gmat are constant. We also assume that the coordination number, the
critical porosity, and the pressure are constant parameters; therefore,
the Hertz-Mindlin elastic moduli at the critical porosity, KHM and
GHM, are constant as well. Using a mathematical software, the com-
putation of the Jacobian of the model with variable clay volume is
also possible. Otherwise, a facies classification can be preliminarily
computed, and an average value for the solid properties can be as-
signed to each facies. The partial derivatives are shown in Appen-
dix B. The linearization is obtained through equation 6. In Figure 3,
we show the comparison between the exact rock-physics model and
the linearized approximation. To compute the actual model, we
made the same assumptions as in the Raymer model. We also as-
sumed that the critical porosity is 0.4, the coordination number is 7,
and the effective pressure is 20 MPa. The elastic moduli of the solid
phase are computed using Voigt-Reuss-Hill averages. Due to the
almost linear behavior of the rock-physics model with respect to
porosity, the linearized model matches the exact model very well.

Figure 1. Raymer model: comparison between
exact rock-physics model (solid black lines) and
linear approximation (dashed red lines). Top plots:
(a) P-wave velocity and (b) S-wave velocity versus
porosity (clay volume varies from 0 to 1 with steps
of 0.2, water saturation is assumed to be constant
and equal to one); mid plots: (c) P-wave velocity
and (d) S-wave velocity versus clay volume
(porosity varies from 0 to 0.3 with steps of 0.1,
water saturation is assumed to be constant and
equal to one); and bottom plots: (e) P-wave veloc-
ity and (f) S-wave velocity versus water saturation
(porosity varies from 0 to 0.3 with steps of 0.1;
clay volume is assumed to be constant and equal
to 0.25).
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Similar results can be obtained for clay content and water saturation
(assuming a patchy saturation mixture).

Linearized inclusion model

The Kuster and Toksöz (1974) inclusion model is a rock-physics
model used to estimate the elastic properties of dry and saturated
rocks by using first-order scattering theory. Several formulations
have been proposed (Mavko et al., 2009). In our work, we assume
that the mineral phase is homogeneous (i.e., the elastic moduli Kmat,
Gmat, and Mmat are constant values), and we use the following for-
mulation to compute the elastic moduli of the saturated rock:

ðKsat − KmatÞ
Mmat

Ksat þ 4
3
Gmat

¼ ϕðKfl − KmatÞP; (28)

ðGsat − GmatÞ
Gmat þ ξ

Gsat þ ξ
¼ −ϕGmatQ; (29)

where P and Q are the geometric factors and Kfl and ξ are given in
equations 20 and 25, respectively. For solid mixtures, the elastic
moduli, Kmat and Gmat, can be computed using Voig-Reuss-Hill
averages (equations 18 and 19). Different geometric shapes can
be used for the inclusions, such as spheres and ellipsoids. For sim-
plicity, we assume spherical inclusions; therefore, the expressions
for the geometric factors are given by

P ¼ Kmat þ 4
3
Gmat

Kfl þ 4
3
Gmat

; (30)

Q ¼ Gmat þ ξ

ξ
: (31)

The expressions for ellipsoids are more complex and depend on
an additional parameter, namely the aspect ratio (Mavko et al.,

2009). To compute the Jacobian of the model in equations 28
and 29, we first explicitly write the saturated-rock elastic moduli,
and we substitute the expressions for the geometric factors. After
simplification, we obtain the following expressions:

Ksat ¼
4KmatGmat þ 3KmatKfl þ 4GmatKflϕ − 4KmatGmatϕ

4Gmat þ 3Kfl − 3Kflϕþ 3Kmatϕ
;

(32)

Gsat ¼
Gmatð9Kmat þ 8GmatÞð1 − ϕÞ

9Kmat þ 8Gmat þ 6ðKmat þ 2GmatÞϕ
: (33)

We then compute the velocities as a function of the elastic moduli
Ksat and Gsat and density ρ ¼ ð1 − ϕÞρmat þ ϕρfl. The partial deriv-
atives are shown in Appendix C. The linearization is obtained
through equation 6. A similar formulation can be obtained for other
inclusion shapes, such as needles, disks, and penny cracks (Mavko
et al., 2009); however, the expressions of the derivatives become
more complex and should be obtained using a mathematical soft-
ware. Similarly, the proposed formulation can be extended to in-
clude multiple mineral volumes. In Figure 4, we present the
comparison between the exact rock-physics model and the linear-
ized approximation, showing a good match.

APPLICATION

We present here the application of the Bayesian linearized rock-
physics inversion to a real data set from an oil reservoir in the North
Sea. The data set includes a set of well logs (P- and S-wave veloc-
ities and density) and computed properties (effective porosity, clay
volume, and water saturation) and a 2D inverted seismic line across
the well. The elastic logs and computed petrophysical parameters
are shown in Figure 5. The main reservoir layer is characterized
by approximately 20 m of clean sand with low percentages of clay
and with oil saturation close to 90%, followed by a sequence of thin
oil-sand layers alternated to interbedded shaley layers. The layers

Figure 2. Raymer model: comparison between
exact rock-physics model (solid black lines) and
linear approximation (dashed red lines). Top plots
show the piecewise linearization: (a) P-wave
velocity and (b) S-wave velocity versus porosity
(clay volume varies from 0 to 1 with steps of
0.2, water saturation is assumed to be constant
and equal to one). Bottom plots show the lineari-
zation for homogeneous mixtures of gas and
water: (c) P-wave velocity and (d) S-wave velocity
versus water saturation (porosity varies from 0 to
0.3 with steps of 0.1; clay volume is assumed to be
constant and equal to 0.25).
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Figure 5. Well-log data set including elastic logs and computed petrophysical parameters. (a) P-wave velocity, (b) S-wave velocity, (c) density,
(d) effective porosity, (e) clay volume, and (f) water saturation.

Figure 4. Inclusion model: comparison between
exact rock-physics model (solid black lines) and
linear approximation (dashed red lines). Plots
show (a) P-wave velocity and (b) S-wave velocity
versus porosity (clay volume varies from 0 to 1
with steps of 0.2; water saturation is assumed to
be constant and equal to one).

Figure 3. Stiff sand model: comparison between
exact rock-physics model (solid black lines) and
linear approximation (dashed red lines). Plots
show (a) P-wave velocity and (b) S-wave velocity
versus porosity (clay volume varies from 0 to 1
with steps of 0.2; water saturation is assumed to
be constant and equal to one).
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above and below the reservoir mostly contain clay. The application
is divided into two parts: in the first part, we aim to estimate the
model parameters (namely, effective porosity, clay volume, and
water saturation) from the measured log data (P- and S-wave veloc-
ities and density); in the second part, we extend the inversion to the
2D section of inverted seismic attributes.
In the first part of the application, we calibrate the rock-physics

model to fit the log measurements, and we compare the results of
three different models: Raymer, stiff sand, and inclusion model. The
relations between petrophysical and elastic properties are shown in
Figure 6, in which we superimpose Raymer and Raymer-Dvorkin
models to the well-log measurements. The model curves are com-

puted for different values of clay volume ranging from 0.05 to 0.8
(with step 0.15) and compared with log measurements. Figure 7
shows the rock-physics model predictions (Raymer model) at the
well location using the exact model (red lines) and the linearized
model (dashed blue lines) for P- and S-wave velocities and density.
The exact and linearized models approximate the elastic logs. The
average errors between the linearized model and the actual elastic
logs are approximately 6.1% for P-wave velocity, 7.2% for S-wave
velocity, and 2.5% for density. A few layers (at depths 2118, 2129,
and 2134 m) show mismatches with errors between 15% and 18%.
These layers might correspond to interbedded carbonate layers
not accounted for in formation-evaluation analysis, measurements

Figure 7. Rock-physics model approximation
(Raymer-Dvorkin model). (a) P-wave velocity,
(b) S-wave velocity, and (c) density (black curves
represent the actual well log, red curves represent
the rock-physics model predictions, and dashed
blue curves represent the linearized model predic-
tions).

Figure 6. Rock-physics model calibration
(Raymer-Dvorkin model): (a) P-wave velocity
versus porosity and (b) S-wave velocity versus
porosity. Log measurements are color coded by
clay volume. Black curves represent (a) Raymer
model and (b) Raymer-Dvorkin model for six val-
ues of clay volume (from top to bottom, the clay
volume is 0.05, 0.20, 0.35, 0.50, 0.65, and 0.8).
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errors, misalignments of elastic and petrophysical logs, or incorrect
well-log interpretation and mineralogical analysis. As expected, the
density predictions show a very good match with the density log.
We then apply the Bayesian rock-physics inversion using the lin-

earized model. The aim of the inversion is to estimate the posterior
probability distribution of the petrophysical properties (effective
porosity, clay volume, and water saturation) given the elastic attrib-
utes (P- and S-wave velocities and density). For the prior distribu-
tion of the petrophysical properties, we assume a trivariate Gaussian
distribution. The prior distribution is spatially invariant. The mar-
ginal distribution of porosity is Nðϕ; 0.15; 0.01Þ, the marginal dis-
tribution of clay volume is NðC; 0.39; 0.06Þ, and the marginal
distribution of water saturation is NðSw; 0.56; 0.14Þ. The marginal
distributions are shown in Figure 8. We assume a prior correlation
between porosity and clay volume of −0.8, a prior correlation be-
tween clay volume and water saturation of 0.8, and a prior corre-
lation between porosity and water saturation of −0.8. We point out
that a Gaussian mixture distribution might be more appropriate for
this application, given the bimodality of the data; however, for sim-
plicity, we assume a Gaussian prior. We also assume a Gaussian
distribution with zero mean and spatially invariant covariance ma-
trix for the error term. The covariance matrix of the error is assumed
to be diagonal with variances equal to 5% of the mean of the actual
data measurements (i.e., 5% of the mean of P-wave velocity, 5% of
the mean of S-wave velocity, and 5% of the mean of density). The

inversion is first applied to elastic log data to compare the results
with the actual petrophysical curves of porosity, clay volume, and
water saturation. At each depth location in the well log, we compute
the posterior distribution of porosity, clay volume, and water satu-
ration conditioned by P- and S-wave velocities and density. The
posterior distributions are truncated at the boundaries of the petro-
physical property ranges to avoid nonphysical values, and the prob-
ability density exceeding the physical boundaries is redistributed
within the physical range. The results for the Raymer model are
shown in Figure 8. Overall, the probability distributions capture
the trend of the actual logs. The posterior standard deviation of
porosity is reduced by 42% compared with the prior, the standard
deviation of clay volume is reduced by 45%, and the standard
deviation of water saturation by 46%. Given the good match be-
tween the actual rock-physics model and the linearized approxima-
tion, we point out that the misclassifications in the posterior
probability distributions are due to the lack of accuracy of the origi-
nal rock-physics model.
We then repeat the inversion using the stiff sand model (Figures 9

and 10) and the inclusion model (Figures 11 and 12). The lineari-
zation shown in Appendices B and C assume a constant clay vol-
ume. In this application, we extended the model to variable clay
content using a mathematical software to compute the derivatives.
The stiff sand model and its linear approximation are shown in
Figure 9. Because the model tends to overestimate S-wave velocity,

Figure 8. Rock-physics model inversion of
elastic-log data (Raymer-Dvorkin model). From
left to right: posterior probability distributions of
porosity, clay volume, and water saturation (black
lines represent the actual well data, and the back-
ground color represents the posterior probability
distribution). The bottom plots show the prior mar-
ginal distributions of porosity, clay volume, and
water saturation, respectively.
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we decreased the value of the shear modulus of the solid phase to
match the well-log data. The linearized model approximates the ac-
tual rock-physics model well. For the inversion, we assume the
same trivariate Gaussian distribution for the model parameters.
We then estimate the posterior marginal probability of porosity,
clay volume, and water saturation conditioned by elastic properties.
The prior and posterior probability distributions are shown in
Figure 10.
Finally, we calibrate the inclusion model and invert the elastic-log

data assuming the same prior model as in the previous examples.
The rock-physics model calibration is shown in Figure 11. The
velocity estimations are similar to the stiff sand model predictions.
The prior and marginal posterior distributions of porosity, clay vol-
ume, and water saturations are shown in Figure 12. In all the exam-
ples, namely, the Raymer, stiff sand, and inclusion models, the
uncertainty on the posterior distribution is reduced compared with
the prior uncertainty.
The linearized rock-physics inversion can then be extended to the

entire reservoir volume. In the second part of the study, we apply the
Bayesian inversion approach to a set of inverted seismic attributes
(P- and S-wave velocities and density) along a seismic crossline
(Figure 13). Seismic attributes were obtained through a determin-
istic elastic inversion based on a convolutional approach. The well is
located at location 2750 m according to the relative scale of the
crossline (Figure 13). The rock-physics model used for the inver-
sion is the Raymer model calibrated to well-log data (Figures 6 and
7). The elastic properties along the 2D section show low resolution
due to the limited seismic bandwidth and low signal-to-noise ratio

of the actual seismic data set (on average the signal-to-noise ratio is
1.8 in the reservoir layer along the section).
We first apply the inversion at the well location and invert the

inverted seismic attributes obtained from the collocated seismic
trace. The prior distribution is the same as in the previous examples,
whereas the covariance matrix of the error is assumed to be diagonal
with variances equal to 10% of the mean of the actual measure-
ments. Because of the lower resolution of seismic data compared
with well-log data, the conditioning data show a smoother behavior,
as presented in Figure 13. For this reason, the estimated posterior
probability of porosity, clay volume, and water saturation show a
larger uncertainty (Figure 14) than the corresponding results con-
ditioned by well-log data (Figure 8). The standard deviation of
porosity is reduced by 18%, the standard deviation of clay volume
by 22%, and the standard deviation of water saturation by 21%. The
interquartile ranges of posterior marginal distributions are 0.16 for
porosity, 0.29 for clay volume, and 0.57 for water saturation. As
expected, water saturation is the most uncertain property. Indeed
the corresponding 90% confidence interval almost covers the entire
range of saturation values. However, we notice that all three proper-
ties are correctly estimated, within a certain tolerance, in the main
reservoir layer.
We finally compare the Bayesian inversion results by using the

exact rock-physics model and the linearized approximation. Be-
cause the exact rock-physics model is nonlinear, an analytical sol-
ution is not available. We therefore discretize the model parameter
and data ranges and numerically evaluate the likelihood function for
each possible combination of the discretized variables and then

Figure 9. Rock-physics model approximation
(stiff sand model). (a) P-wave velocity, (b) S-wave
velocity, and (c) density (black curves represent
the actual well log, red curves represent the
rock-physics model predictions, and dashed blue
curves represent the linearized model predictions).
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numerically compute the posterior distribution. The results are al-
most identical (Figure 15). The correlations between exact and lin-
earized inversion results for porosity, clay content, and water
saturation are 0.94, 0.89, and 0.91, respectively.

DISCUSSION

This work introduces a mathematical approach for the lineari-
zation of the rock-physics model and adopts an analytical Baye-
sian approach under Gaussian assumptions of the parameters
distributions. In general, rock-physics models are not linear,
but the nonlinearity is not strong. Indeed, the model calibration
plots in the examples show that the models used in this work
are almost linear with respect to the model parameters. The advan-
tage of the current approach is that the linearization of the models
allows us to derive analytical solutions of the rock-physics inverse
problem. In our application, we adopted the Bayesian approach to
estimate the model parameters and their uncertainty. However,
least-squares inversion methods and regularized approaches (As-
ter et al., 2011) could be used as well with the presented linearized
model. The proposed approach can be directly integrated in the
Bayesian linearized AVO inversion proposed by Buland and Omre
(2003); however, because the Bayesian AVO approach assumes a
log-normal distribution of the elastic properties, to combine this

approach with the linearized rock-physics inversion, the rock-
physics linearization should be performed in the logarithmic
domain.
An example of a model where the linearization in terms of poros-

ity might fail is the soft sand model for highly unconsolidated sand,
because of the nonlinear behavior of the model due to the harmonic
average formulation. In this case, the linearization using Taylor’s
expansion centered in the mean of the petrophysical properties
might introduce a significant bias in the approximation. However,
if a facies classification is available, it is possible to introduce a
piecewise linearization, where, in each facies, we compute a new
linearization of the rock-physics model. An example of this ap-
proach is shown in Figure 2 for Raymer’s model. A similar exam-
ple, where the linearization in terms of saturation might fail, is a
rock-physics model in which we assume a homogeneous saturation
law for a gas-water mixture. Homogeneous mixtures are common
for reservoir fluids. A nonlinear rock-physics model should be used
in these situations.
The current approach can be extended to other elastic attributes,

such as P- and S-impedances and Poisson’s ratio, by introducing
additional derivatives, using the chain rule. Similarly, other rock
and fluid properties, such as calcite volume, gas, or oil saturation,
can be estimated as long as a suitable rock-physics model is avail-
able. Additional rock-physics relations can be also included in the

Figure 10. Rock-physics model inversion of elas-
tic-log data (stiff sand model). From left to right:
posterior probability distributions of porosity, clay
volume, and water saturation (black lines represent
the actual well data, and the background color rep-
resents the posterior probability distribution). The
bottom plots show the prior marginal distributions
of porosity, clay volume, and water saturation,
respectively.
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Figure 11. Rock-physics model approximation
(inclusion model). (a) P-wave velocity, (b) S-wave
velocity, and (c) density (black curves represent
the actual well log, red curves represent the rock-
physics model predictions, and dashed blue curves
represent the linearized model predictions).

Figure 12. Rock-physics model inversion of elas-
tic-log data (inclusion model). From left to right:
posterior probability distributions of porosity, clay
volume, and water saturation (black lines represent
the actual well data, and the background color rep-
resents the posterior probability distribution). The
bottom plots show the prior marginal distributions
of porosity, clay volume, and water saturation,
respectively.
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inversion workflow. For example, Archie, Simandoux, or Poupon-
Leveaux equations could be introduced to improve the fluid esti-
mation. Because these models include exponential relations, the
logarithm of the model response should be first computed to esti-
mate the model linearization.
This work focuses on the model linearization and the inverse

problem formulation. The inversion in the proposed examples
was presented, assuming a Gaussian distribution of the petrophys-
ical properties. However, petrophysical properties are generally not
Gaussian. Analytical formulations of the Bayesian approach for
skewed and multimodal distributions are presented in Rimstad
and Omre (2010) and Grana and Della Rossa (2010), respectively,
and could be used for the rock-physics inversion. When the data are
not Gaussian, for skewed distributions, normal score transforma-
tions can be introduced as well. For multimodal distributions,
the normal score transformation has some limitations; therefore,
we suggest to model each mode independently and then linearly
combine the distributions according to a set of weights, such as
the facies proportions.
Most of the examples presented in this work are based on well-

log data. However, the inversion can be applied to elastic attributes
estimated from seismic data at the well location and in the entire
reservoir volume as shown in the last example. The extension of
the inversion to the 3D model is not computationally demanding.
Indeed, in the Gaussian case, once a rock-physics model has been

Figure 13. Set of 2D sections of elastic attributes used as condition-
ing data in the rock-physics inversion. (a) P-wave velocity, (b) S-
wave velocity, and (c) density. The black triangle indicates the well
location.

Figure 14. Rock-physics model inversion of col-
located inverted seismic trace (position 2750 m
in Figure 13). From left to right: posterior proba-
bility distributions of porosity, clay volume, and
water saturation (black lines represent the actual
well data, and the background color represents
the posterior probability distribution). The bottom
plots show the prior marginal distributions of
porosity, clay volume, and water saturation, re-
spectively.
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calibrated at the well location, the inversion only requires the com-
putation of the conditional mean and the spatially independent
covariance matrix at each location in the seismic grid (equations 7
and 8). However, we point out that the rock-physics inversion in the
seismic grid assumes that the rock-physics model calibrated at
the well location is also valid far away from the well. Furthermore,
the resolution of the inverted seismic attributes (i.e., the condition-
ing data in the rock-physics inversion) is lower than the well-log
resolution. Because of the lower resolution of seismic data, misclas-
sifications at the seismic scale occur more frequently, especially in
thin layers below the seismic resolution. Several methods have been
proposed to account for the resolution aspect in the inversion. If a
Bayesian linearized AVO inversion is applied for the elastic inver-
sion of partial stacked seismic data, and the proposed Bayesian lin-
earized rock-physics inversion is applied for the petrophysical
property prediction from seismic attributes, then the so-obtained
probability distributions can be combined using the probabilistic
upscaling method based on the Chapman-Kolmogorov equation
proposed in Grana and Della Rossa (2010). However, this approach
might fail in highly anisotropic geologic environments, such as thin
layers and fractures, for the nonlinearity of the geophysical relations
governing the upscaling.

CONCLUSION

We have presented an analytical formulation of the rock-physics
inversion workflow based on a Bayesian approach to the inverse
problem. The formulation relies on the Gaussian assumption of

the model to be estimated and on the linearization of the rock-phys-
ics model. The linearized rock-physics model is obtained by calcu-
lating the first-order approximation of Taylor’s series expansion.
Because the rock-physics model depends on the lithologic environ-
ment, we proposed the linearized formulation of three different
rock-physics models: the empirical Raymer’s model, the stiff sand
model based on granular media theory, and the Kuster-Toksöz
model based on inclusion theory. The method is applicable to
rock-physics models that are linear or slightly nonlinear, but might
fail for highly nonlinear models. The explicit analytical form of the
posterior distribution provides a computationally fast-inversion
method. The examples using well-log data show that all inverted
parameters are correctly estimated, when the rock-physics model
provides accurate predictions.
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APPENDIX A

RAYMER MODEL PARTIAL DERIVATIVES

The partial derivatives of P-wave velocity with respect to the
model parameters (first row of the Jacobian matrix) are

Figure 15. Bayesian rock-physics inversion of elastic properties in Figure 9 for petrophysical properties: porosity (top), clay volume (middle),
and water saturation (bottom). Plots on the left show the inversion results using the exact rock-physics model, and plots on the right show the
inversion results using the linearized model. The black triangle indicates the well location.
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∂VP

∂ϕ
¼ −2ð1 − ϕÞVP;mat þ VP;fl; (A-1)

∂VP

∂C
¼ ð1 − ϕÞ2 1

VP;mat

ψP ρmat −Mmatðρc − ρqÞ
ðρmatÞ2

; (A-2)

where

ψP ¼ 1

2

�
ðKc − KqÞ −

�
1∕Kc − 1∕Kq

ðC∕Kc þ ð1 − CÞ∕KqÞ2
��

þ 2

3

�
ðGc − GqÞ −

�
1∕Gc − 1∕Gq

ðC∕Gc þ ð1 − CÞ∕KGqÞ2
��

;

(A-3)

∂VP

∂Sw
¼ ϕ

1

2VP;fl

ðKw − KhcÞρfl − Kflðρw − ρhcÞ
ðρflÞ2

: (A-4)

The partial derivatives of S-wave velocity with respect to the model
parameters (second row of the Jacobian matrix) are

∂VS

∂ϕ
¼ −2ð1 − ϕÞVS;mat

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − ϕÞρmat

ρ

s

þ ð1 − ϕÞ2VS;mat

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−ϕÞρmat

ρ

q −ρmatρfl
ρ2

; (A-5)

∂VS

∂C
¼ð1−ϕÞ2

�
1

2VS;mat

ψSρmat−Gmatðρc−ρqÞ
ρmat

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−ϕÞρmat

ρ

s

þVS;mat

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−ϕÞρmat

ρ

q ð1−ϕÞðρc−ρqÞϕρfl
ρ2

�

(A-6)

where

ψS ¼
1

2

�
ðGc − GqÞ −

�
1∕Gc − 1∕Gq

ðC∕Gc þ ð1 − CÞ∕KGqÞ2
��

;

(A-7)

∂VS

∂Sw
¼ ð1−ϕÞ2VS;mat

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−ϕÞρmat

ρ

q −ϕðρw − ρhcÞð1−ϕÞρmat

ρ2
;

(A-8)

The partial derivatives of density with respect to the model param-
eters (third row of the Jacobian matrix) are

∂ρ
∂ϕ

¼ −ρmat þ ρfl; (A-9)

∂ρ
∂C

¼ ð1 − ϕÞðρc − ρqÞ; (A-10)

∂ρ
∂Sw

¼ ϕðρw − ρhcÞ: (A-11)

APPENDIX B

STIFF SAND MODEL PARTIAL DERIVATIVES

To compute the derivative with respect to porosity, we first
rewrite the rock-physics model equations (equations 23–25) by re-
grouping all the terms that do not depend on porosity. The saturated-
rock bulk modulus can be then written as

Ksat ¼
Kmat

�
αþ 4

3
Gmatβϕþ γ

�
α − Kmatβϕþ γ

; (B-1)

where

α ¼ KflMmatðKmat − KHMÞ; (B-2)

β ¼ ðKmat − KHMÞðKfl − KmatÞ; (B-3)

γ ¼ Kmat

�
4

3
Gmat þ KHM

�
ðKmat − KflÞϕc; (B-4)

and the saturated-rock shear modulus is

Gsat ¼
ϕðGHM − GmatÞξþ δGmat

ϕðGmat − GHMÞ þ δ
; (B-5)

where
δ ¼ ðξþ GHMÞϕc: (B-6)

The rock-physics model predictions are then obtained by combining
the velocity definitions (equations 26 and 27) with the so-obtained
expressions of the elastic moduli (equations B-1–B-6) and the den-
sity relation.
The derivatives of P- and S-wave velocities with respect to poros-

ity are then

∂VP

∂ϕ
¼ 1

2ρ2VP

�
ρ

�
βðαþ γÞKmatMmat

ðα − Kmatβϕþ γÞ2

þ 4

3

δðGHM − GmatÞðGmat þ ξÞ
ðϕðGmat − GHMÞ þ δÞ2

�

−Msatðρfl − ρmatÞ
�
; (B-7)

∂VS

∂ϕ
¼ 1

2ρ2VS

�
ρ

�
δðGHM − GmatÞðGmat þ ξÞ
ðδ − ðGHM − GmatÞϕÞ2

�

− Gsatðρfl − ρmatÞ
�
: (B-8)

The derivative of density with respect to porosity is the same as in
equation A-9.
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Similarly, to compute the derivatives with respect to water satu-
ration, we first rewrite the model in a compact form and regroup all
the terms that do not depend on the fluid bulk modulus (i.e., on
water saturation). The shear modulus does not depend on the fluid;
therefore, its derivative with respect to water saturation is zero. The
expression for the saturated-rock bulk modulus is

Ksat ¼
Kmat

�
Kfl

�
ηþ 4

3
θGmat − λ

�
þ Kmat

�
λ − 4

3
θGmat

��
Kflðη − θKmat − λÞ þ Kmatðλþ θKmatÞ

;

(B-9)

where

η ¼ ðKmat − KHMÞMmat; (B-10)

θ ¼ ðKmat − KHMÞϕ; (B-11)

λ ¼
�
4

3
Gmat þ KHM

�
Kmatϕc: (B-12)

Clearly, the expressions in equations B-1 and B-9 are exactly the
same; we simply regrouped the terms depending on porosity (equa-
tion B-1) and fluid bulk modulus (equation B-9) to simplify the
illustration of the computation of the Jacobian. We then compute
the derivatives of P- and S-wave velocities with respect to water
saturation:

∂VP

∂Sw
¼ 1

2ρ2VP

�
ρ

�
ηθðKw − KhcÞðKmatÞ2Mmat

ðηKfl − ðKfl − KmatÞðλþ θKmatÞÞ2
�

−Msatϕðρw − ρhcÞ
�
; (B-13)

∂VS

∂Sw
¼ −

1

2ρ2VS

Gsatϕðρw − ρhcÞ: (B-14)

The derivative of density with respect to water saturation is the same
as in equation A-11.

APPENDIX C

INCLUSION MODEL PARTIAL DERIVATIVES

The derivatives of P- and S-wave velocities with respect to poros-
ity and water saturation are

∂VP

∂ϕ
¼ 1

2ρ2VP

�
ρ

�ð4Gmatþ3KflÞðKfl−KmatÞð4Gmatþ3KmatÞ
ð4Gmatþ3Kfl−3Kflϕþ3KmatϕÞ2

þ20

3

Gmatð32G2
matþ60KmatGmatþ27K2

matÞ
ð9Kmatþ8Gmatþ6ðKmatþ2GmatÞϕÞ2

�

−Msatðρfl−ρmatÞ
�
; (C-1)

∂VP

∂Sw
¼ 1

2ρ2VP

�
ρ

� ðKw − KhcÞð4Gmat þ 3KmatÞ2ϕ
ð4Gmat þ 3Kfl − 3Kflϕþ 3KmatϕÞ2

�

−Msatϕðρw − ρhcÞ
�
; (C-2)

∂VS

∂ϕ
¼ 1

2ρ2VS

�
ρ

�
−5Gmatð32G2

matþ60KmatGmatþ27K2
matÞ

ð9Kmatþ8Gmatþ6ðKmatþ2GmatÞϕÞ2
�

−Gsatðρfl−ρmatÞ
�
; (C-3)

∂VS

∂Sw
¼ −

1

2ρ2VS

Gsatϕðρw − ρhcÞ: (C-4)

The derivatives of density with respect to porosity and water sat-
uration are given in equations A-9 and A-11.
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