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ABSTRACT

The prediction of petrophysical properties, such as porosity
and rock-fluid volumes, from partially stacked seismic data
typically requires a rock-physics model that often is lithology
dependent and difficult to calibrate. We adopt canonical corre-
lation analysis (CCA) to infer the underlying relation between
petrophysical properties and elastic attributes estimated from
seismic data. We develop a two-step inversion approach: first,
we predict elastic properties from partially stacked seismic data
using a Bayesian linear inverse method based on an amplitude-
variation-with-offset (AVO) linearization in terms of fluid, ri-
gidity, and density factors, and then we predict petrophysical
properties from the estimated AVO attributes using CCA.
The novelty of our approach is the application of CCA to
the fluid and rigidity factors, which avoids the calibration of

an explicit rock-physics model by automatically deriving a
linear relation in the lower dimensional space of the canonical
variables. The parameterization of the linearization in terms
of fluid, rigidity, and density factors maximizes the correlation
with respect to the petrophysical properties of interest. Further-
more, the probabilistic approach is extended to the petrophys-
ical inversion using Bayesian linear theory and the posterior
distribution of petrophysical properties conditioned by seismic
data is computed by combining the probability distributions
obtained from seismic and petrophysical inversion to propa-
gate the uncertainty from the seismic to the petrophysical do-
main. The inversion is validated on a synthetic case that finds
high accuracy of our formulation. A case study with synthetic
and real partially stacked seismic data also is presented and
compared to a traditional inversion with an explicit rock-phys-
ics model.

INTRODUCTION

The prediction of petrophysical properties from seismic data
requires a rock-physics model to relate the petrophysical properties
to their elastic response and a seismic forward model to link elastic
properties to their seismic response (Grana et al., 2021). In seismic
reservoir characterization studies, the seismic forward operator
often is approximated with amplitude-variation-with-offset (AVO)
models (Avseth et al., 2010), whereas the rock-physics model de-
pends on the geologic environment and is empirically calibrated us-
ing well-log data and core samples (Mavko et al., 2020).
Seismic AVO methods are commonly used in reservoir charac-

terization to predict elastic attributes from partially stacked seis-
mic data. These attributes represent physical properties related to

stiffness, density, and wave velocities, and they are interpreted in
terms of rock and fluid properties. AVO formulations are generally
expressed as a combination of three terms associated with three
elastic attributes, with the coefficients of the combination depend-
ing on the incidence angle. Several AVO parameterizations have
been presented, including P- and S-wave velocities, density, P- and
S-impedances, elastic moduli, and nonlinear combinations of
these parameters (Bortfeld, 1961; Richards and Frasier, 1976;
Aki and Richards, 2002).
AVO formulations provide a mathematically tractable approxima-

tion to the equations for the calculation of the amplitudes of the re-
flected and transmitted waves as derived by Knott (1899) and
Zoeppritz (1919). The most common AVO approximation is the
Aki-Richards’ equation (Aki and Richards, 2002), where the P-wave
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reflectivity coefficients are approximated as a linear combination of
the reflectivity terms associated with P- and S-wave velocities and
density. This linear formulation can be used in seismic inversion
to calculate the unknown values of P- and S-wave velocities and den-
sity from the seismic amplitudes using least-square methods. Alter-
natively, this formulation can be used to derive a Bayesian linearized
method for seismic inversion and predict the posterior distribution of
P- and S-wave velocities and density, as proposed in Buland and
Omre (2003).
Gidlow et al. (1992) and Fatti et al. (1994) propose a different

parameterization expressed in terms of P- and S-impedance and
density, by rearranging Aki-Richards’ formulation. Shuey
(1985) replaces the shear-velocity term with the Poisson ratio.
Gray et al. (1999) propose two parameterizations: the l-m-r for-
mulation expressed in terms of the Lamé modulus λ, the shear
modulus μ, and the density ρ, and the k-m-r formulation expressed
in terms of the bulk modulus K, the shear modulus μ, and the den-
sity ρ. This parameterization is based on the AVO formulation pro-
posed by Goodway et al. (1997) based on the Lamé elastic
parameters. Russell et al. (2003) generalize the approaches presented
in Goodway et al. (1997) and Gray et al. (1999) by combining them
with the poroelastic relations proposed by Biot (1941) and Gassmann
(1951). According to the Russell et al. (2003) general formulation,
the weights of the AVO approximation depend on the incidence angle
and two elastic constants, specifically the VP=VS ratio in saturated
conditions and the VP=VS ratio in dry conditions. Russell et al.
(2011) propose a new AVO linearized formulation expressed in terms
of the fluid-porosity factor f (henceforth called the fluid factor for
simplicity), the shear modulus μ, and the density ρ. The approaches
presented in Goodway et al. (1997) and Gray et al. (1999) then be-
come specific cases of the formulation in Russell et al. (2011). In this
work, we adopt a formulation based on Russell et al. (2011), where
we replace the shear modulus μwith the rigidity factor s (also referred
to as solid factor). We refer to this formulation as the f-s-r formu-
lation, and we correlate these variables to the petrophysical properties
of interest.
The available AVO formulations provide a powerful tool for

quantitative seismic interpretation; however, the current parame-
terizations do not provide intuitive parameters for the evaluation
of porosity nor rock and fluid volumetric fractions. It is known that
high velocity is generally associated with low porosity and that a
high VP=VS ratio might be an indicator of shale presence; how-
ever, the quantification of porosity, mineral volumes, and fluid sat-
urations requires rock-physics models that link the petrophysical
properties to the elastic properties, such as those proposed by
Avseth et al. (2010), Dvorkin et al. (2014), and Mavko et al.
(2020). Seismic AVO inversion for elastic properties (Goodway
et al., 1997; Connolly, 1999; Whitcombe et al., 2002; Buland
and Omre, 2003; Hampson et al., 2005) can be integrated with
rock-physics models in a process that is referred to as petrophys-
ical inversion, and also can be performed with probabilistic meth-
ods (Bosch, 1999; Mukerji et al., 2001; Mazzotti and Zamboni,
2003; Bornard et al., 2005; Coléou et al., 2005; Bachrach,
2006; Gunning and Glinsky, 2007; Buland et al., 2008; González
et al., 2008; Spikes et al., 2008; Bosch et al., 2009; Avseth et al.,
2010; Grana and Della Rossa, 2010; Rimstad et al., 2012; Con-
nolly and Hughes, 2016; Grana, 2016; Aleardi and Ciabarri,
2017; Grana et al., 2017; Aleardi et al., 2018a, 2018b; Fjeldstad
and Grana, 2018).

Rock-physics models must be calibrated using core samples
or well-log data, as they often include empirical parameters.
The calibration and the integration of the rock-physics relations
in the AVO formulation are generally challenging due to the
spatial variations of the rock-physics model parameters and the
nonlinearity of the model. For this reason, we propose to define
an implicit relation between AVO attributes and petrophysical
properties using canonical correlation analysis (CCA). CCA
finds linear combinations between two sets of variables that maxi-
mize their pair-wise linear correlations (Thompson, 1984; Har-
doon et al., 2004). CCA has been applied in geoscience studies for
facies classification (Fournier and Derain, 1995; Purkait and Ma-
jumdar, 2014), seismic reservoir characterization (Alvarez et al.,
2015), interpretation of time-lapse seismic attributes (Wu et al.,
2005), reservoir modeling forecasting (Satija et al., 2017), and
geologic modeling uncertainty quantification (Yin et al., 2020).
However, CCA has not been used in the context of petrophysical
inversion.
We propose a petrophysical inversion consisting of two steps:

(1) Bayesian linearized inversion of partially stacked seismic
data based on the f-s-r formulation (Russell et al., 2011) with re-
spect to fluid and rigidity factors and density and (2) CCA to pre-
dict petrophysical properties from AVO attributes. The CCA-
based petrophysical inversion is formulated in the deterministic
and Bayesian frameworks. The proposed application focuses on
a clastic reservoir in which the properties of interest are porosity,
clay volume, and water saturation, but the method can be applied
to any geologic environment with any finite set of petrophysical
variables.

METHOD

Theoretical background

In AVO studies, the seismic response of a sequence of fluid-sa-
turated porous rocks can be computed using a seismic convolutional
model (Russell, 1988; Aki and Richards, 2002), in which the seis-
mic amplitudes are approximated by convolution of a known source
wavelet w and the vector of reflection coefficients rPP. The reflec-
tion coefficients represent the angle-dependent reflectivity magni-
tudes of the elastic contrasts at the interfaces. For an incidence angle
θ, the seismic signal dðt; θÞ can be expressed as a function of the
two-way traveltime t as

dðt;θÞ¼wðt;θÞ � rPPðt;θÞ¼
Z

wðt;θÞrPPðt−u;θÞdu; (1)

where � is the convolution operator. However, for weak elastic
contrasts and small incidence angles, linear approximations are
commonly used (Aki and Richards, 2002). The Aki-Richards’
approximation (Aki and Richards, 2002) is the most common lin-
earization of Zoeppritz equations, where the reflectivity coefficients
rPPðt; θÞ are approximated as a function of P- and S-wave velocity,
VPðtÞ and VSðtÞ, and density ρðtÞ. Aki-Richards’ equation can
be written as a time-continuous reflectivity function (Stolt and
Weglein, 1985) as follows:
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rPPðt; θÞ ¼ cPðθÞ
∂
∂t
ln VPðtÞ þ cSðθÞ

∂
∂t
ln VSðtÞ

þ cρðθÞ
∂
∂t
ln ρðtÞ; (2)

with angle-dependent coefficients given by

8><
>:

cPðθÞ ¼ 1
2
ð1þ tan2 θÞ

cSðθÞ ¼ − 4
γ2
sin2 θ

cρðθÞ ¼ 1
2
ð1 − 4

γ2
sin2 θÞ

; (3)

where γ ¼ VP=VS is the ratio of the average VP and VS of fluid-
saturated porous rocks.
Among the several reparameterizations of equation 2, Russell

et al. (2011) propose a linear formulation that involves a fluid term
f, a rigidity factor s, and density ρ, based on the Krief et al. (1990)
synthesis of the poroelasticity theory of Biot (1941) and Gassmann
(1951). The fluid and rigidity factors are defined according to
poroelasticity theory (Russell et al., 2011) as

f ¼
�
1 − Kdry

Ksol

�
2

ϕ
Kfl

þ ð1−ϕÞ
Ksol

− Kdry

K2
sol

; (4)

s ¼ Kdry þ
4

3
μdry; (5)

where Kdry is the dry-rock bulk modulus, Ksol is
the solid-phase bulk modulus, Kfl is the fluid-
phase bulk modulus, ϕ is porosity, and
μdry ¼ μsat is the shear modulus of the porous
rock. The fluid term is part of the Gassmann equa-
tion as Ksat ¼ Kdry þ f, whereas the rigidity fac-
tor represents the dry-rock compressional modulus
s ¼ Mdry. The fluid term f is more completely
written as α2M, where α ¼ ð1 − ðKdry=KsolÞÞ2
is the Biot coefficient and M ¼ ððϕ=KflÞ þ ðð1 −
ϕÞ=KsolÞ − ðKdry=K2

solÞÞ−1 is the Biot fluid modu-
lus (Russell et al., 2011). Thus, although the s term
isolates the dry rock component, the f term does
not fully isolate the fluid component and contains
a term involving the solid and dry-rock bulk
moduli. However, the f term is a sensitive indica-
tor of changes in fluid content, more so than the
commonly used l-m-r approach (Goodway et al.,
1997) as shown in Russell et al. (2011).
The f-s-rAVO linearization can be then formu-

lated as

rPPðt; θÞ ¼ cfðθÞ
∂
∂t
ln fðtÞ

þ csðθÞ
∂
∂t
ln sðtÞ þ crðθÞ

∂
∂t
ln ρðtÞ; (6)

with angle-dependent coefficients given by

8>>><
>>>:

cfðθÞ ¼
�
1−

γ2
dry

γ2

�
sec2 θ
4

csðθÞ ¼ 1
γ2

�
sec2 θ
4

− 2
γ2
dry

sin2 θ
�
;

crðθÞ ¼ 1
2
− sec2 θ

4

ð7Þ

where γdry ¼ ðVP=VSÞdry ¼ ðKdry=μdryÞ þ ð4=3Þ. If the ratios γdry
and γ are taken to be constant along the profile, then the reflection
coefficients depend only on the angle θ. The original formulation in
Russell et al. (2011) is expressed in terms of f, μdry ¼ s=γ2dry, and ρ;
however, in this work, we reformulate the linearization in terms of
f, s, and ρ to maximize the correlation between the rigidity factor
and the mineral volume.
The fluid and rigidity factors can be computed from P- and S-

wave velocities and density as

f ¼ ðρVPÞ2 − γ2dryðρVSÞ2; (8)

s ¼ γ2dryðρVSÞ2; (9)

as shown in Russell et al. (2011). The fluid and rigidity factors
and density are strictly related to petrophysical properties, such
as porosity, mineral volumes, sorting, diagenesis, cementation,
and fluid saturations. Figure 1 shows the correlations between
the elastic attributes and the petrophysical properties: the linear cor-
relations between fluid factor and saturation ðcðf; swÞ ¼ 0.91Þ and
between porosity and density ðcðρ;ϕÞ ¼ −0.92Þ are high, whereas
the correlation between the rigidity factor and the clay volume

Figure 1. Correlations between f-s-r elastic attributes and petrophysical properties:
(a) fluid factor versus water saturation, (b) fluid factor versus clay volume, (c) fluid
factor versus porosity, (d) rigidity factor versus water saturation, (e) rigidity factor versus
clay volume, (f) rigidity factor versus porosity, (g) density versus water saturation,
(h) density versus clay volume, and (i) density versus porosity.
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ðcðs; vcÞ ¼ 0.23Þ is relatively low, due to the porosity effect on the
shear modulus. Porosity affects all three elastic properties as the
porosity is part of the fluid term, rigidity term, and density. Simi-
larly, density is affected by all petrophysical properties as the den-
sity of the fluid-saturated porous rocks depends on fluid saturations,
mineral fractions, and pore volume. The interdependence between
petrophysical and elastic properties is one of the main sources of
uncertainty as often observed in rock-physics modeling (Avseth
et al., 2010).
Based on the correlation between the variables in the f-s-r

AVO linearization and the petrophysical properties, we propose
an innovative inversion method to predict petrophysical properties
from seismic data. First, we predict the elastic attributes of the f-s-r
formulation from partially stacked seismic data using a Bayesian
linearized inversion, and then we estimate the petrophysical proper-
ties using CCA.

Bayesian linearized f-s-r inversion

We first present a Bayesian linearized inversion f-s-r approach
for the prediction of elastic attributesm ¼ ½f; s; ρ� from nθ seismic
angle stacks d ¼ ½dðθ1Þ; : : : ; dðθnθ Þ�, following the Bayesian lin-
earized AVO inversion approach presented by Buland and Omre
(2003). The forward model in the inversion is the convolution
(equation 1) of a known source wavelet w and the vector of reflec-
tion coefficients rPP computed according to the f-s-r formulation
(equation 6). The operator is linear in the logarithms of the fluid
factor, rigidity factor, and density. The unknown model variables
are represented by the vector m ¼ ½ln f; ln s; ln ρ�T of length
nm ¼ 3ðnt þ 1Þ, where nt is the number of seismic measurements
(corresponding to nt interfaces of nt þ 1 layers with unknown
elastic properties).
The discretization of the continuous reflectivity series repre-

sented by the vector c of length nθnt is given by

c ¼ ADm; (10)

where A is a matrix containing the discrete time samples of the co-
efficients cfðθÞ; csðθÞ, and crðθÞ (equation 7) and D is a first-order
differential matrix (Buland and Omre, 2003).
The seismic signal is represented by the vector d of length

nθnt and is computed as a discrete convolution (i.e., matrix-vector
multiplication) of the wavelet matrix and the reflection coefficient
vector c:

d ¼ Wcþ ε ¼ WADmþ ε; (11)

where W is a block-diagonal matrix containing the discretized
wavelets, one per angle, and ε is a vector of length nθnt that rep-
resents the data errors. In equation 11, W is a band matrix of di-
mensions ðnθnt × nθntÞ, A is a sparse block matrix of dimensions
ðnθnt × 3ntÞ, and D is a sparse block matrix of dimensions
ð3nt × nmÞ. The structure of these matrices is the same as in Buland
and Omre (2003) and Grana et al. (2021) and it is given in
Appendix A.

We can rewrite equation 11 component by component as

2
66666666666666664

dðt1;θ1Þ
..
.

dðtnt ;θ1Þ
dðt1;θ2Þ

..

.

..

.

dðtnt ;θnθÞ

3
77777777777777775

¼W

2
66666666666666664

cðt1;θ1Þ
..
.

cðtnt ;θ1Þ
cðt1;θ2Þ

..

.

..

.

cðtnt ;θnθÞ

3
77777777777777775

þ

2
66666666666666664

εðt1;θ1Þ
..
.

εðtnt ;θ1Þ
εðt1;θ2Þ

..

.

..

.

εðtnt ;θnθÞ

3
77777777777777775

¼WAD

2
6666666666666666666664

fðτ1Þ
..
.

fðτntþ1Þ
sðτ1Þ
..
.

sðτntþ1Þ
ρðτ1Þ
..
.

ρðτntþ1Þ

3
7777777777777777777775

þ

2
66666666666666664

εðt1;θ1Þ
..
.

εðtnt ;θ1Þ
εðt1;θ2Þ

..

.

..

.

εðtnt ;θnθÞ

3
77777777777777775

; (12)

where t1; : : : ; tnt are the time samples of the measurements (at the
interfaces) and τ1; : : : ; τntþ1 are the time samples of the unknown
variables (in the layers).
We adopt the same assumptions as in Buland and Omre (2003) and

Grana et al. (2021).We assume that the error ε is distributed according
to a Gaussian distribution ε ∼N ðε; 0;ΣεÞ with 0 mean and covari-
ance matrix Σε. We also assume that the prior distributions of the
elastic attributes f , s, and ρ are log-Gaussian with temporal correla-
tion. Hence, the concatenated vectorm ¼ ½ln f; ln s; ln ρ�T, of length
nm ¼ 3ðnt þ 1Þ, is a multivariate Gaussian distribution
m ∼N ðm;μm;ΣmÞ with prior mean μm and prior covariance matrix
Σm. The prior mean μm ¼ ½μf;μs;μρ�T is a vector of length
nm ¼ 3ðnt þ 1Þ, where μf , μs, and μρ are the vectors of prior means
of the logarithm of f, s, and ρ, and represent the low-frequency mod-
els of the elastic attributes. The low-frequency (prior) models are
computed from sonic and density logs by filtering velocity and den-
sity using Backus average (in time domain) and applying the trans-
formations in equations 8 and 9. The prior covariance matrix
Σm ¼ covmðtÞ;mðsÞ includes the covariances of the logarithm of elastic
properties and time covariances at times t and s based on a time-cor-
relation model. For example, the prior covariance matrix Σm can be
defined as Σm ¼ Σ0 ⊗ Σt of the time-invariant covariance matrix of
the logarithm of elastic attributes Σ0 and the time-dependent correla-
tion matrix Σt defined by the time-correlation function vðjt − sjÞ as
in Buland and Omre (2003), where ⊗ is the Kronecker product.
The matrix Σ0 has dimensions ð3 × 3Þ, whereas the matrix Σt has
dimensions ðnt þ 1 × nt þ 1Þ; hence, the covariance matrix Σm

has dimensions ðnm × nmÞ:
According to this assumption, the posterior distribution of the

elastic attributes m conditioned on the seismic data d is a Gaussian
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distribution mjd ∼N ðm;μmjd;ΣmjdÞ, and the posterior mean μmjd
and posterior covariance matrix Σmjd are given by

μmjd ¼ μm þ ðWAΣ 0
mÞTΣ−1

d ðd − μdÞ; (13)

Σmjd ¼ Σm − ðWAΣ 0
mÞTΣ−1

d WAΣ 0
m; (14)

where Σ 0
m is the first derivative of the covariance matrix Σm (Buland

and Omre, 2003; Grana et al., 2021). Using log-Gaussian transfor-
mations, the expression of the maximum a posteriori estimate m̂ of
the elastic attributes becomes

m̂ ¼ expðμmjd − σ2
mjdÞ. (15)

By applying Bayesian linearized f-s-r inversion, we obtain the
most likely values of the fluid factor f, the rigidity factor s, and
the density ρ.

Canonical correlation analysis

In practical applications, the physical relations between the elastic
attributes (fluid factor f, rigidity factor s, and density ρ) and the pet-
rophysical properties (porosity ϕ, mineral volumes, and fluid satura-
tions) are generally unknown and their approximations through rock-
physics models are challenging. For this reason, we propose the ap-
plication of CCA to infer the relationship between the measured var-
iables X (i.e., the elastic attributes) and the unknown variables Y
(i.e., the petrophysical properties) from the cross covariance of mea-
surements and unknowns. In this work, we assume that the petro-
physical properties of interest are porosity ϕ, clay volume vc, and
water saturation sw, but the approach can be extended to any finite
set of variables.
Given two sets of variables X ¼ ½x1; : : : ; xn� and

Y ¼ ½y1; : : : ; ym�, for example, X ¼ ½f; s; ρ� and Y ¼ ½ϕ; vc; sw�,
their cross covariance is given by ΣX;Y ¼ covðX;YÞ, where each
element σi;j ¼ covðxi; yjÞ for i ¼ 1; : : : ; n and j ¼ 1; : : : ; m.
CCA finds two vectors, â of length n and b̂ of length m, that maxi-
mize the correlation c between U ¼ Xâ and V ¼ Yb̂ as

ðâ; b̂Þ ¼ argmaxa;bðcðXa;YbÞÞ: (16)

The variables U and V are referred to as the first pair of canonical
variables. CCA then finds two more vectors, uncorrelated with the
first pair of canonical variables, that maximize the correlation in
equation 16, to obtain the second pair of canonical variables. This
process may be iterated nC ¼ minðn;mÞ times. The derivation is
based on the Cauchy-Schwarz inequality and can be found in
Thompson (1984). Its implementation is based on the singular value
decomposition, and discussions can be found in statistical texts such
as Jolliffe (2002) and Izenman (2008).
In the context of petrophysical inversion, we apply CCA to a train-

ing data set (e.g., a set of core samples or a subset of well-log data)
containing the n measured variables (e.g., Xtr ¼ ½f tr; str; ρtr� with
n ¼ 3) and the m unknown variables (e.g., Ytr ¼ ½ϕtr; vtrc ; strw� with
m ¼ 3) to determine the pairs of canonical variables ðUtr

i ;V
tr
i Þ

for i ¼ 1; : : : ;minðn;mÞ. For each pair of canonical variables
ðUtr

i ;V
tr
i Þ, we compute a linear regression:

ðα̂i; β̂iÞ ¼ argminαi ;βik ~Vtr
i − Vtr

i k
¼ argminαi ;βikðαiUtr

i þ βiÞ − Vtr
i k: (17)

By definition of the CCA canonical variables, the regression coeffi-
cients α̂i should converge to one, whereas the regression coefficients
β̂i should converge to zero for i ¼ 1; : : : ;minðn;mÞ, although, in
practical applications, they might not be exactly equal to these values
due to numerical approximations. We then compute the canonical
variables Ui of the seismic attributes obtained in the Bayesian
linearized f-s-r inversion X ¼ ½f; s; ρ�, i.e., as Ui ¼ Xâi for
i ¼ 1; : : : ;minðn;mÞ and the corresponding canonical variables
of the petrophysical parameters ~Vi ¼ α̂iUi þ β̂i. Finally, we compute
the predictions of the petrophysical properties as Y ¼ ~Vðb̂Þ−1.
Figure 2 shows an example of application of CCA for the predic-

tion of petrophysical properties from synthetic well-log data gener-
ated according to the stiff-sand model (Gal et al., 1998). The
properties of interest are porosity, clay volume, and water saturation.
We test the approach with two different data sets: the f-s-r parameter-
ization in terms of the fluid and rigidity factors and density, and the
Aki-Richards’ parameterization in terms of P- and S-wave velocities
and density. The training data set is extracted from well logs, and it
includes 25% of the total number of well-log samples (randomly se-
lected). Overall, the predictions obtained from fluid and rigidity fac-
tors and density are more accurate. The correlations between actual
measurements and predictions are as follows: 0.99 for water satura-
tion, 0.98 for clay volume, and 0.99 for porosity for the f-s-r param-
eterization, and 0.84 for water saturation, 0.90 for clay volume, and
0.95 for porosity for the Aki-Richards’ parameterization.

Figure 2. Petrophysical properties prediction from well-log data us-
ing CCA: (a) water saturation, (b) clay volume, and (c) porosity.
The black lines represent the actual well logs, the red lines represent
the CCA predictions from f-s-r elastic attributes (fluid and rigidity
factors and density), and the blue lines represent the CCA predic-
tions from Aki-Richards’ elastic attributes (P- and S-wave velocities
and density).
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By applying CCA to the results of the Bayesian linearized f-s-r
inversion, we obtain the predictions of the petrophysical properties,
such as porosity ϕ, clay volume vc, and water saturation sw. Because
the transformations U ¼ Xâ, ~Vi ¼ α̂iUi þ β̂i, and Y ¼ ~Vðb̂Þ−1 are
linear, then the petrophysical properties Y can be written as a linear
combination of the elastic properties X:

Y ¼ KXþ Λ; (18)

and the proposed approach can be directly formulated in a Bayesian
setting. Indeed, if X is a multivariate Gaussian distribution
N ðX;μX;ΣXÞ with mean μX and covariance matrix ΣX , then its lin-
ear transformation Y is a multivariate Gaussian distribution
N ðYjX;μYjX;ΣYjXÞ with conditional mean μYjX and conditional
covariance matrix ΣYjX given by, respectively,

μYjX ¼ KμX þ Λ; (19)

ΣYjX ¼ KTΣ−1
X K: (20)

We can then combine the results of the Bayesian linearized f-s-r
inversion with the Bayesian approach to CCA to predict the pos-
terior distribution of petrophysical properties from seismic data
PðrjdÞ. If we indicate with r the petrophysical properties, m the
elastic properties, and d the seismic data, then the Bayesian linear-
ized f-s-r inversion provides the posterior distribution PðmjdÞ of
elastic properties given the seismic data, and the Bayesian approach
to CCA provides the conditional distribution PðrjmÞ of petrophys-
ical properties conditioned by elastic properties. According to our
assumptions, PðmjdÞ is a multivariate log-Gaussian distribution and
PðrjmÞ is a multivariate Gaussian distribution. Then, the posterior

distribution of petrophysical properties PðrjdÞ given the seismic
data is computed using the Chapman-Kolmogorov equation (Grana
and Della Rossa, 2010):

PðrjdÞ ¼
Z

PðrjmÞPðmjdÞdm; (21)

where we assume that PðmjdÞ ¼ Pðmjd; rÞ as the seismic data only
depend on the seismic attributes. Equation 21 allows propagating
the uncertainty from seismic data to petrophysical predictions
through the seismic f-s-r model and the CCA-based implicit
rock-physics model.

APPLICATION

We test the method by applying the petrophysical inversion to a
synthetic data set generated from a set of well-log data measured in a
borehole in the Norwegian Sea. The well-log data set is shown in
Figure 3. The interval under consideration includes an oil-saturated
clastic reservoir and a shaley layer at the bottom of the reservoir. The
main reservoir layer is located between approximately 1.82 and
1.86 s, and it shows relatively high porosity values with low clay
volume and a small percentage of irreducible water saturation. It also
includes an interbedded shaley layer in the upper part. The lower
shaley interval shows lower porosity values with higher clay content
and it is fully saturated with water. The elastic properties are com-
puted according to the stiff-sand model (Gal et al., 1998; Dvorkin
et al., 2014). The fluid factor is computed using equation 8,
f ¼ ðρVPÞ2 − γ2dryðρVSÞ2, and the rigidity factor is computed using

equation 9, s ¼ γ2dryðρVSÞ2, where the parameter γ2dry is approximated
using the stiff-sand model (Gal et al., 1998). Figure 4 shows the cal-
culated fluid and rigidity factors as well as the synthetic partially

stacked seismic data for three angle stacks corre-
sponding to 10° (near stack), 23° (midstack), and
35° (far stack). The synthetic seismic data are gen-
erated as the convolution of a Ricker wavelet with
dominant frequency of 45 Hz and the linearized
approximation of Zoeppritz equations.
We first apply the Bayesian linearized f-s-r in-

version. The prior model for the mean of the elas-
tic parameters is obtained by filtering the well-
log curves of fluid and rigidity factors and den-
sity using Backus average to obtain the low-fre-
quency trend of the model variables, whereas the
prior covariance matrix is estimated from the ac-
tual well logs. The results of the inversion are
shown in Figure 5 and show high accuracy in
the predictions, especially in the main reservoir
(from 1.82 to 1.86 s). In the lower part of the in-
terval, the abrupt transitions of porosity and clay
volume in the interbedded layers below seismic
resolution are not accurately captured, but the
overall trend is correctly detected. Figure 5 also
shows the 0.90 confidence interval of the Baye-
sian linearized inversion. The inversion is rela-
tively precise for the rigidity factor and density
with coverage ratios slightly greater than 0.9,
whereas for the fluid factor the uncertainty is
slightly overestimated with coverage ratio close

Figure 3. Well-log data in time domain: (a) porosity, (b) clay volume, (c) water satu-
ration, (d) P-wave velocity, (e) S-wave velocity, and (f) density. The gray markers show
the top and the bottom of the main reservoir.
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to 1, possibly due to the variability of the pore volume in the bottom
part of the interval. We then apply CCA to predict the petrophysical
properties of interest. The pairs of canonical variables are calculated
based on the petrophysical well-log data in Fig-
ure 3 and the elastic attributes in Figure 4. The
training data set includes 25% of the well-log
samples (randomly selected). Because we apply
CCA to two sets of three variables, we obtain
three pairs of canonical variables (Figure 6).
Their correlations are 0.9998, 0.9952, and
0.9692. The results of the petrophysical inversion
for porosity, clay volume, and water saturation
are shown in Figure 7. Despite the limitations
due to the limited bandwidth of seismic data,
the inversion results are accurate for water satu-
ration and porosity, especially in the upper part,
whereas clay volume is not fully resolved, pos-
sibly due to the low correlation between the ri-
gidity factor and the clay volume (Figure 2). The
correlations between the actual measurements
and the predictions are as follows: 0.83 for poros-
ity, 0.64 for clay volume, and 0.97 for water sat-
uration. Figure 7 also shows the 0.90 confidence
interval of the CCA-based Bayesian inversion.
The posterior variance is slightly overestimated
for water saturation and porosity with coverage
ratio close to 1. The elastic properties predicted
from the inversion results are shown in Figure 8
and compared with the actual well logs and the
upscaled well logs and show a satisfactory match
at the seismic resolution.
To assess the accuracy of the inversion, we compare the results to

two different inversion methods: a Bayesian linearized AVO inver-
sion with CCA and a Bayesian linearized AVO inversion with a
rock-physics model. First, we apply a Bayesian linearized AVO in-
version based on Aki-Richards’ linearized approximation to obtain
the maximum a posteriori estimates of P- and S-wave velocities and
density, as proposed in Buland and Omre (2003). The results of the
seismic inversion are shown in Figure 9 and show an accurate pre-
diction of the elastic properties, consistent with the band-limited
nature of seismic data. The uncertainty is slightly underestimated
with coverage ratio less than 0.90. Then, we apply CCA between
the set of elastic properties, i.e., P- and S-wave velocities and den-
sity, and the set of petrophysical properties of interest, i.e., porosity,
clay volume, and water saturation. The inversion results are shown
in Figure 10. The inversion captures the overall trend of the petro-
physical properties, but the predictions are less accurate than the
proposed method based on the f-s-r parameterization. Indeed, the
correlations between actual measurements and predictions are as
follows: 0.71 for porosity, 0.45 for clay volume, and 0.93 for water
saturation. Compared with the results in Figure 7 obtained with the
proposed method based on the f-s-r parameterization, the posterior
uncertainty of the petrophysical properties is overall narrower and
underestimated, especially for water saturation, possibly due to the
regression of the predictions toward the mean. In the second com-
parison, we calibrate a rock-physics model and apply a Bayesian
rock-physics inversion (Grana et al., 2021) based on a truncated
Gaussian prior distribution and using the same rock-physics model,
i.e., the stiff-sand model (Gal et al., 1998; Dvorkin et al., 2014),

used to generate the synthetic data. The results of the Bayesian
rock-physics inversion are shown in Figure 11. The inversion per-
forms relatively well in the bottom part of the data set and predicts

Figure 4. Elastic attributes in time domain and synthetic seismic data: (a) fluid factor,
(b) rigidity factor, (c) density, (d) near seismic amplitudes, (e) midseismic amplitudes,
and (f) far seismic amplitudes.

Figure 5. Bayesian linearized f-s-r inversion: (a) fluid factor, (b) ri-
gidity factor, and (c) density. The black lines represent the actual well
logs, the red lines represent the maximum a posteriori model from the
Bayesian linearized inversion, and the blue lines represent the prior
model. The dashed lines represent the 0.90 confidence interval. The
gray markers show the top and the bottom of the main reservoir.
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the petrophysical variations in the interbedded layer; however, the
results are less accurate overall than the proposed method, espe-
cially for water saturation. The water saturation predictions show
a larger local variability and a regression toward the mean value,
similar to the results obtained in Figure 10. The correlations be-
tween the actual measurements and the predictions are as follows:
0.85 for porosity, 0.86 for clay volume, and 0.73 for water satura-
tion. Due to the nonlinearity of the rock-physics model, the analyti-
cal expression of the 0.90 confidence interval is not available for the
Bayesian rock-physics inversion.
As in Buland and Omre (2003) and Grana and Della Rossa

(2010), the proposed inversion can be extended according to a
trace-by-trace approach, leading to an efficient inversion algorithm
for 2D and 3D seismic data sets. We demonstrate the applicability of
the method to a 2D partially stacked seismic line acquired in an oil-
saturated clastic reservoir in the Norwegian Sea. The data set in-
cludes three angle stacks, corresponding to average angles of 10°
(near stack), 23° (midstack), and 35° (far stack) and it is shown

in Figure 12. The three wavelets are extracted from each angle stack
independently, and they are zero phase with dominant frequencies
equal to 24, 22, and 21 Hz. The sampling rate of the seismic data is

Figure 6. Pairs of canonical variables obtained by applying CCA to
f-s-r elastic attributes and petrophysical properties. The red dots re-
present the training data set (25% of the well logs), and the black
dots represent the full well-log data set.

Figure 8. Elastic properties predictions from CCA-based inversion
results: (a) P-wave velocity, (b) S-wave velocity, and (c) density.
The black lines represent the actual well logs, the red lines represent
the predictions from the inverted results in Figure 7, and the blue
lines represent the upscaled well logs.

Figure 7. CCA predictions from f-s-r elastic attributes: (a) porosity,
(b) clay volume, and (c) water saturation. The black lines represent
the actual well logs and the red lines represent the predictions from
CCA. The dashed lines represent the 0.90 confidence interval.
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4 ms, and the signal-to-noise ratio is approximately 2. The low-fre-
quency model of the elastic properties is obtained by filtering the
well-log data with a maximum frequency of 10 Hz and interpolating
the filtered data along the seismically interpreted horizon, whereas
the prior distribution of the petrophysical properties is estimated
from the well-log data. The inversion results for porosity, clay vol-
ume, and water saturation are shown in Figure 13 and compared
with the upscaled well-log data. Overall, the inversion results match
the upscaled well-log data for water saturation and porosity,
whereas clay volume is slightly underestimated in the interbedded
shaley layers.

DISCUSSION

The proposed methodology combines two useful tools: the Baye-
sian f-s-r seismic inversion and the Bayesian CCA-based petrophys-
ical inversion. The main advantage of the Bayesian f-s-r seismic
data compared with the Bayesian linearized AVO inversion based
on the traditional Aki-Richards approximation (Buland and Omre,
2003) is the high correlation between the predicted elastic param-
eters and the reservoir petrophysical properties, in particular be-
tween the fluid factor and the water saturation. The fluid factor
is an effective tool for discriminating fluids, especially in gas-satu-
rated reservoirs (Russell et al., 2011), but it also can be used in other
applications with different fluid conditions. The ability of the fluid
factor to discriminate between fluids in the reservoir depends on
several factors, including the spatial distribution of the fluid com-
ponents in the mixture and the variability of the pore volume. In
a homogeneous mixture of gas and water, the fluid factor can

Figure 9. Bayesian linearized AVO inversion: (a) P-wave velocity,
(b) S-wave velocity, and (c) density. The black lines represent the
actual well logs, the red lines represent the maximum a posteriori
model from the Bayesian linearized inversion, and the blue lines
represent the prior model. The dashed lines represent the 0.90 con-
fidence interval.

Figure 10. CCA predictions from Aki-Richards’ elastic attributes:
(a) porosity, (b) clay volume, and (c) water saturation. The black lines
represent the actual well logs, and the red lines represent the predic-
tions from CCA. The blue lines represent the results in Figure 7 and
are shown for comparison. The dashed lines represent the 0.90 con-
fidence interval.

Figure 11. Rock-physics inversion predictions from Aki-Richards’
elastic attributes: (a) porosity, (b) clay volume, and (c) water satu-
ration. The black lines represent the actual well logs, and the red
lines represent the predictions from CCA. The blue lines represent
the results in Figure 7 and are shown for comparison.
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discriminate fully water-saturated rock from fully gas-saturated
rocks, but it might fail to discriminate partially saturated rocks from
fully gas-saturated rocks, whereas, in patchy mixtures, the fluid

factor can discriminate the fluid saturations, as the fluid factor
response is approximately linear with respect to the fluid modulus,
hence water saturation. The CCA-based petrophysical inversion and
its Bayesian formulation are a powerful tool for the prediction of the
petrophysical properties in the absence of an explicit rock physics.
CCA is an efficient method to find a transformation of the measured
properties and variables of interest in a domain where the trans-
formed variables are highly linearly correlated. As the transforma-
tion is linear, the inversion is extremely efficient, and the Bayesian
formulation can be naturally extended to the CCA-based petrophys-
ical inversion. Because the result of the Bayesian seismic inversion
is a log-Gaussian distribution and the result of the Bayesian petro-
physical inversion is a Gaussian distribution, to combine the two
probability distributions and propagate the uncertainty from the
seismic domain to the petrophysical domain, it is necessary to nu-
merically compute the posterior probability using the integral of the
product of the two distributions (equation 21); however, this integral
can be efficiently computed in a discretized domain using matrix
multiplications, as shown in Grana et al. (2021). Overall, we rec-
ommend testing multiple elastic parameterizations for the applica-
tion of CCA to identify the set of elastic parameters with the highest
correlation in the CCA transformed domain. The Bayesian linear-
ized AVO approximation can then be extended to the chosen param-
eterization, by modifying the forward seismic operator, and the
Bayesian CCA-based petrophysical inversion can be applied to
the seismic inversion results.

CONCLUSION

We have presented an innovative inversion combining a Bayesian
linearized AVO approach for seismic inversion and CCA for the
prediction of petrophysical properties from partially stacked seismic
data. The proposed approach is built on the Bayesian linearized
AVO inversion and the f-s-r linearized AVO approximation. By
combining these two methods, we can predict a set of elastic attrib-
utes that are correlated with the petrophysical properties of interest.
The novelty of the proposed approach is the application of CCA to
the parameterization of the seismic inversion in terms of fluid and
rigidity factors, which provides an implicit rock-physics model for
the seismic reservoir characterization of petrophysical properties.
CCA is used to find canonical variates (linear combinations of origi-
nal variables) that maximize the correlation between the predictor
variables (elastic attributes) and the response variables (petrophys-
ical properties). Indeed, as CCA is derived directly from the well-
log data, this approach does not require the calibration of an explicit
rock-physics model. Furthermore, the CCA-based petrophysical in-
version is applied in a Bayesian framework, which can be integrated
with the Bayesian f-s-r linearized AVO inversion to propagate the
uncertainty from seismic data to petrophysical properties. The pro-
posed method allows predicting petrophysical properties with
higher accuracy compared with traditional methods. The f-s-r
AVO linearization includes a fluid factor term that is highly corre-
lated with the water saturation, which can improve the seismic res-
ervoir characterization in terms of the fluid distribution. The
proposed approach can be extended to any combination of elastic
attributes and any petrophysical parameterization, as CCA finds lin-
ear transformations of the input properties that maximize their cor-
relation.

Figure 12. Partially stacked seismic data measured in an oil-satu-
rated clastic reservoir in the Norwegian Sea: (a) near seismic am-
plitudes (10°), (b) midseismic amplitudes (23°), and (c) far seismic
amplitudes (35°).

Figure 13. Petrophysical inversion results along the 2D seismic line
in Figure 12: (a) porosity, (b) clay volume, and (c) water saturation.
The superimposed column represents the upscaled well-log data.
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APPENDIX A

DISCRETE CONVOLUTIONAL MODEL

In the discrete convolution in equations 10 and 11, the matrixA is
a sparse block matrix of dimensions ðnθnt × 3ntÞ:

A ¼

2
64
Afðθ1Þ Asðθ1Þ Arðθ1Þ

..

. ..
. ..

.

AfðθnθÞ AsðθnθÞ ArðθnθÞ

3
75; (A-1)

where AfðθiÞ, AsðθiÞ, and ArðθiÞ are diagonal matrices of dimen-
sions ðnt × ntÞ:

AfðθiÞ ¼

2
64
cfðθiÞ : : : 0

..

. . .
. ..

.

0 : : : cfðθiÞ

3
75;

AsðθiÞ ¼

2
64
csðθiÞ : : : 0

..

. . .
. ..

.

0 : : : csðθiÞ

3
75;

ArðθiÞ ¼

2
64
crðθiÞ : : : 0

..

. . .
. ..

.

0 : : : crðθiÞ

3
75;

(A-2)

with diagonal elements equal to cfðθiÞ; csðθiÞ, and crðθiÞ, given in
equation 7, for i ¼ 1; : : : ; nθ.
The first-order differential matrix D is a sparse block matrix of

dimensions ð3nt × nmÞ:

D ¼
2
4Db 0 0

0 Db 0

0 0 Db

3
5; (A-3)

with three blocks Db of size ðnt × nt þ 1Þ on the main diagonal:

Db ¼

2
6664

−1 1 0 : : : 0

0 −1 1 . .
. ..

.

..

. . .
. . .

. . .
.

0

0 : : : 0 −1 1

3
7775: (A-4)

The wavelet matrix W is a sparse band matrix of dimensions
ðnθnt × nθntÞ:

W ¼

2
664
W1ðθ1Þ : : : 0

..

. . .
. ..

.

0 : : : WnθðθnθÞ

3
75; (A-5)

where the block Wi of size (nt × nt) contains the wavelet for the
angle θi:

WiðθiÞ¼

2
66666666666666666664

wiðt1Þ : : : 0 : : : 0

..

. . .
. ..

. ..
. ..

.

..

. ..
.

wiðt1Þ ..
. ..

.

..

. ..
. ..

. . .
. ..

.

wiðtnwÞ ..
. ..

. ..
.

wiðt1Þ
..
. . .

. ..
. ..

. ..
.

..

. ..
.

wiðtnwÞ ..
. ..

.

..

. ..
. ..

. . .
. ..

.

0 : : : 0 : : : wiðtnwÞ

3
77777777777777777775

; (A-6)

for i ¼ 1; : : : ; nθ, as shown in Buland and Omre (2003) and Grana
et al. (2021).
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