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ABSTRACT

Bayesian methods are commonly used for geophysical in-
verse problems, such as seismic and rock-physics inversion,
for the prediction of petroelastic properties. Bayesian inversion
is based on Bayes’ theorem and combines the information from
a prior distribution and a likelihood function; in geophysical
applications, the prior model generally includes the available
geologic information about the model variables, whereas the
likelihood includes the geophysical models that link the model
to the data. The goal of Bayesian inversion is to estimate the
posterior distribution of the model variables conditioned by
the measured data. The focus is on the prior model and its
parameters. Typically, the parameters of the prior distributions
are assumed to be fixed, for example, the mean and standard
deviation of the prior distribution of petroelastic properties in

seismic inversion or the facies proportions and transition prob-
abilities in facies classification. I have studied the posterior
distribution of the model given the data in a Bayesian setting
using multiple prior models. The posterior distribution is as-
sessed by summing the contributions of all of the likelihood
functions of the model given the data, using different sets of
parameters, weighted by the probabilities of the parameters. I
apply the mathematical formulation in different problems, in-
cluding log-facies classification, seismic-facies classification,
and petrophysical property prediction and using different meth-
ods for the prior model generation such as transition matrices,
training images, and Gaussian mixture models with multiple
modes. The results show that multiple prior models can match
the data and that the uncertainty in the prior parameters should
be accounted for in the posterior distribution of the reservoir
properties.

INTRODUCTION

The Bayesian framework is generally considered the natural ap-
proach for the geophysical inverse problem to predict a set of model
variables from measured data sets and quantify their uncertainty
(Tarantola, 2005). The inverse problem solution is the posterior dis-
tribution of the model variables conditioned by the measured data,
at each location of the reservoir model.
Bayesian inverse theory has gained popularity in the geophysics

community, and several applications to inversion of seismic data
have been presented. Tarantola and Valette (1982) provide a general
introduction to nonlinear geophysical inverse problems and their
probabilistic formulation. Doyen (1988), Bortoli et al. (1993), and
Haas and Dubrule (1994) present the first geostatistical methods for
inversion of seismic data for petrophysical property estimation. An
overview of Bayesian inverse theory, uncertainty quantification, and
stochastic sampling algorithms for geophysical inverse problems is

presented in Sen and Stoffa (1996) and Ulrych et al. (2001). Mukerji
et al. (2001) and Eidsvik et al. (2004) combine Bayesian inversion
with statistical rock physics in probabilistic seismic inversion meth-
ods. Buland and Omre (2003) propose an analytical solution of the
Bayesian formulation of the linearized amplitude variation with
offset inversion. Several subsequent works combine Bayesian inver-
sion formulation with rock physics models to predict the probability
distribution of petrophysical properties given seismic data as in
Contreras et al. (2005), Gunning and Glinsky (2007), Spikes et al.
(2008), Grana and Della Rossa (2010), Rimstad et al. (2012), Aze-
vedo et al. (2013), Kemper and Gunning (2014), and Grana et al.
(2017). These publications differ for the model variables (either dis-
crete properties, such as facies, or continuous variables, such as pet-
roelastic properties), the statistical assumptions (e.g., Gaussian,
Gaussian mixture, generalized Gaussian or nonparametric probabil-
ity density functions), the computational algorithms (analytical sol-
utions versus Monte Carlo methods), and the physical models
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(linearized or nonlinear seismic and rock physics operators). Bosch
et al. (2010) provide an overview of the state of the art of petrophys-
ical modeling and seismic reservoir characterization. Monte Carlo
methods for stochastic sampling of elastic and petrophysical proper-
ties conditioned by seismic data have been proposed in Mosegaard
and Tarantola (1995), Mosegaard (1998), Connolly and Hughes
(2016) and de Figueiredo et al. (2019a, 2019b). The Bayesian for-
mulation has also been applied to joint seismic and electromagnetic
inversion (Chen et al., 2007).
In most applications, the prior model parameters are inferred

from well logs and are assumed to be known in the inversion.
The influence of the prior model in probabilistic inversion for geo-
physical inverse problems is discussed in Scales and Tenorio
(2001). Sensitivity analyses on the prior models have been previ-
ously presented for several geophysical applications (Oldenburg
and Li, 1999; Miller and Routh, 2007). Here, I propose to use multi-
ple prior models and compute the posterior distribution by calculating
the contribution of all the likelihood functions weighted by the prob-
ability of the model parameters and integrating over all possible prior
parameters. By sampling from multiple prior models with different
parameters, we generate several realizations and verify if the prior
model parameters used to generate the realizations are consistent with
the observed data. A prior falsification approach using multipoint ge-
ostatistics prior models for reservoir characterization has been pre-
sented by Park et al. (2013) and Scheidt et al. (2015, 2018). In
their approach, the likelihood of different training images of gener-
ating the measured data is preliminarily computed, to reduce the
number of prior models to be evaluated in the inversion.
In the proposed approach, I assume a set of plausible prior mod-

els based on geologic information or data from nearby wells (e.g.,
the transition probabilities of a first-order Markov chain or training
images of a facies sequence), I sample the model parameters from
the prior and compute a set of model realizations (e.g., the facies
profiles at the well location), evaluate the likelihood of the measured
data given the model realization, and finally compute the posterior
distribution of the model given the data by summing all of the like-
lihood functions of the data given the model weighted by the prior
probabilities.
In the “Application” section, I present five examples to illustrate

the methodology and show the value of the prior distribution in the
inversion including a real data application to well log data inversion
for the prediction of facies and petrophysical properties. Examples 1
and 2 illustrate a facies classification problem for an alternating se-
quence of sand and shale, using synthetic seismic data. These exam-
ples are used to validate the methodology for different geostatistical
simulation methods: Markov chain models and multipoint geostatis-
tics. Example 3 shows a rock physics inversion of real well log data
for petrophysical property prediction using multimodal distributions.
This example shows the applicability to continuous variables such as
petrophysical properties. Example 4 extends the previous example to
joint facies and petrophysical properties prediction based on seismic
data. Example 5 is a 2D application representing a vertical section of
a clastic reservoir with three lithofluid facies.

METHODOLOGY

The focus of geophysical inverse problems is to predict the model
variables m from measured data d assuming that the geophysical
relations g that predicts the geophysical response of a given model
is known as

d ¼ gðmÞ þ e; (1)

where e is the error in the measurements. In seismic reservoir char-
acterization, the geophysical relations g can include rock physics
models such as granular media, inclusion, and empirical models
(Mavko et al., 2009) to link petrophysical properties to elastic attrib-
utes (e.g., porosity and saturation to velocity and density) and seis-
mic models such as Kennett’s invariant imbedding method or
linearized approximations based on convolution and Zoeppritz
equations (Aki and Richards, 1980; Kennett, 1984; Tromp and
Snieder, 1989; Mukerji et al., 1997) to link elastic attributes to their
seismic response. The goal is to assess the posterior distribution
pðmjdÞ from the prior distribution pðmÞ of the model variables
and the likelihood function pðdjmÞ of the data given the model var-
iables

pðmjdÞ ¼ pðdjmÞpðmÞ
pðdÞ ; (2)

where the probability pðdÞ of the data is a normalization constant.
The formulation in equations 1 and 2 can be applied to discrete and

continuous random variables. In geophysical applications, examples
of inverse problems with continuous random variables include elastic
inversion of seismic data (to predict a set of elastic properties such as
velocities or impedances) and petrophysical inversion of seismic data
(to predict a set of petrophysical variables such as porosity and min-
eral volumes), whereas examples of inverse problems with discrete
random variables include facies or rock-type classification of seismic
data. Therefore, the model variable m can be discrete or continuous.
In the discrete case, the prior model is a probability mass function,
whereas, in the continuous case, the prior model is a probability den-
sity function.
The parameters θ of the prior model are the parameters that con-

trol the prior knowledge about the model. Examples of parameters
are facies transition matrix probabilities, facies proportions, training
images, mean and variance of Gaussian prior distributions of con-
tinuous properties, and spatial correlation parameters of discrete or
continuous properties. Generally, the parameters θ of the model are
fixed in Bayesian inversion. But there might be multiple values of
the same parameter that leads to the same geophysical response of
the model, that is, the same predicted data. If the parameters θ are
not fixed, Bayes’ theorem in equation 2 can be rewritten as follows:

pðmjd; θÞ ¼ pðdjm; θÞpðmjθÞ
pðdjθÞ ; (3)

where pðdjm; θÞ is the likelihood function and pðmjθÞ is the prob-
ability of the model given the set of parameters θ. The denominator
pðdjθÞ is a normalizing constant that represents the likelihood of the
vector of data d for all possible model configurations m generated
from the given prior model θ.
The posterior distribution pðmjdÞ can then be obtained by inte-

grating over all of the possible parameters θ:

pðmjdÞ ¼
Z

Ωθ

pðmjd; θÞpðθjdÞdθ; (4)

where Ωθ is the parameter space (Papoulis, 1984).
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The conditional distributions pðmjd; θÞ and pðθjdÞ can be com-
puted using Bayes’ theorem (Anderson, 1984). The posterior dis-
tribution pðmjdÞ becomes

pðmjdÞ ¼
Z

Ωθ

pðdjm; θÞpðmjθÞ
pðdjθÞ

pðdjθÞpðθÞ
pðdÞ dθ;

¼
Z

Ωθ

pðdjm; θÞpðmjθÞpðθÞ
pðdÞ dθ: (5)

If θ is a continuous parameter, the integral in
equation 5 must be approximated using numerical
methods. Generally, it is necessary to discretize
the parameter space Ωθ such that it only includes
a finite number of values. In geophysical applica-
tions, a further reduction of the parameter space
Ωθ can be obtained from prior geologic informa-
tion, by imposing constraints on facies transitions
and continuous properties bounds. For example,
some facies sequences could be excluded if they
do not represent geologically meaningful stratig-
raphy or violate depositional rules. If Ω 0

θ indicates
the reduced parameter space, equation 5 can be
rewritten in the discrete formulation as

pðmjdÞ ¼
X
Ω 0

θ

pðdjm; θÞpðmjθÞpðθÞ
pðdÞ : (6)

In the proposed approach, I first sample the
model parameters from pðθÞ; I compute the model
realizations from pðmjθÞ; I develop the likelihood
pðdjm; θÞ of the data given the model realizations
and the parameters using the geophysical forward operator g in equa-
tion 1 (e.g., a rock-physics relation combined with a seismic wave
propagation model); and I finally assess the posterior distribution
pðmjdÞ using equation 6, which sums the contributions of all the like-
lihood pðmjd; θÞ weighted by the prior probability of the model and
parameters pðm; θÞ ¼ pðmjθÞpðθÞ.
It is also possible to evaluate the posterior probability pðθjdÞ as

pðθjdÞ ¼ pðdjθÞpðθÞ
pðdÞ ; (7)

to determine the set of prior parameters that most likely describe the
measured data. The likelihood pðdjθÞ can be obtained by integra-
tion over all of the possible model realizations (Papoulis, 1984)

pðθjdÞ ¼ pðθÞ
pðdÞ

Z

Ωm

pðdjm; θÞpðmjθÞdm; (8)

where the domain Ωm is the space of the model realizations. The
integral in equation 8 can be approximated using a finite sum over a
discretized domain Ω 0

m

pðθjdÞ ¼ pðθÞ
pðdÞ

X
Ω 0

m

pðdjm; θÞpðmjθÞ: (9)

Similarly, a set of parameters ω can be also defined for the like-
lihood function and might include the rock physics parameters (e.g.,
the coordination number, critical porosity, and fluid bulk modulus)
and the seismic parameters (e.g., the seismic wavelet). However, in
the proposed approach, we assume that the rock physics and seismic
parameters in the forward model are known.
The proposed formulation can be applied with any inversion

method including analytical solutions for particular cases, such
as Bayesian linearized inversion under Gaussian assumptions as
in Buland and Omre (2003) and Grana (2016), and numerical sol-

Figure 1. The workflow of the proposed methodology: A finite set of prior models is
first defined, and then multiple realizations are sampled from each prior model; for each
realization, the likelihood of the data is evaluated, and then the posterior distribution is
assessed in a Bayesian framework.

Figure 2. Example 1. Reference synthetic model at the well location:
(a) the facies profile (reference model) with alternating sequence of
sand (in white) and shale (in black) and (b) the synthetic seismic data
(measured data).
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utions, such as Monte Carlo rejection sampling and Markov-chain-
Monte-Carlo (McMC) methods (Metropolis, Metropolis-Hastings,
and Gibbs sampling algorithms) as in Grana et al. (2017) and de
Figueiredo et al. (2019a, 2019b).
The workflow of the methodology is shown in Figure 1. First, I

choose a set of prior models, then I develop the conditional prob-
abilities pðdjm; θÞ and pðmjθÞ according to the adopted inversion
approach using either numerical or analytical methods, and, finally,
I compute the posterior probability using equation 6. The posterior
probability of the prior models is then computed using equation 9.

APPLICATION

I validate the methodology on synthetic and real examples. Ex-
ample 1 focuses on facies classification from seismic data where I
adopt a stationary first-order Markov chain for the prior model of
the facies. I assume that there are two facies, sand and shale, but the
average thickness of the layers is uncertain. I analyze three possible
geologic scenarios: sequences of moderately thick layers of sand
and shale (scenario A), sequences of thick sand and thick shale
layers (scenario B), and sequences of thick sand and interbedded
thin shale (scenario C). Proportions of sand and shale are the same
and equal to 50% in scenarios A and B; whereas in scenario C, the
sand proportion is 90% and shale proportion is 10%. Example 2 is
the same facies classification problem as in example 1, but in this
example, I adopt training images of facies profiles for multipoint
geostatistics simulations to analyze scenarios A, B, and C.

Examples 3 and 4 focus on the prediction of continuous petro-
physical properties, namely porosity and clay volume, from elastic
properties. Example 3 is a rock physics inversion where the number
of facies is unknown, and the prior distribution of petrophysical
properties is a Gaussian mixture with a variable number of compo-
nents. Example 4 is a joint facies and petrophysical inversion of
seismic data, in which two facies models are available, one com-
patible with the well log scale and one compatible with the seismic
scale. Finally, example 5 is a 2D application representing a vertical
section of a clastic reservoir with three lithofluid facies.

Example 1: Multiple transition matrices

In the first example, the model variablem is the facies profile, the
data d are the zero-offset seismogram, and the parameters θ are the
Markov chain transition probabilities (Krumbein and Dacey, 1969).
A Markov chain is a stochastic model describing a sequence of pos-
sible events (the facies occurrence, in our application) in which the
probability of a given event (the facies occurrence at a given depth)
depends only on the previous events (the facies occurrences at the
depths above).
The true facies model is a vector of 100 samples, and it represents

a sequence of five layers of shale (in black) alternated to five layers
of water-saturated high-porosity sand (in white) with a constant
thickness equal to 25 m. In each facies, we assume constant elastic
properties. The compressional-wave velocity is 2000 m/s in shale
and 2500 m/s in sand; the shear-wave velocity is 1000 m/s in shale
and 1500 m/s in sand; and the density is 2.5 g/cm3 in shale and
2.25 g/cm3 in sand. The synthetic seismic data are obtained using
Kennett’s invariant imbedding method (Kennett, 1984). The Ricker
wavelet has a dominant frequency of 30 Hz. The signal-to-noise
ratio (S/N) is 10. The true facies model and the corresponding seis-
mic measurements are shown in Figure 2. The three potential geo-
logic scenarios are shown in Figure 3. Scenario A corresponds to
the true model, scenario B shows a sequence of three ticker layers of
shale and three ticker layers of sand, whereas scenario C shows 10
thick sand layers alternated to 10 thin shale layers (Figure 3).
The inversion is performed using a Bayesian inversion based on

first-order stationary Markov chains (Krumbein and Dacey, 1969).
The data error is assumed to be Gaussian with 0 mean and constant
variances equal to 10% of the variance of the data; hence, the data
likelihood given the model is Gaussian. The parameter θ represents

Table 1. Example 1. Transition matrices of reference model
and three conceptual models.

Shale (bottom) Sand (bottom)

Reference — 0.90 Reference — 0.10

Shale (top) Scenario A — 0.90 Scenario A — 0.10

Scenario B — 0.95 Scenario B — 0.05

Scenario C — 0.10 Scenario C — 0.90

Reference — 0.10 Reference — 0.90

Sand (top) Scenario A — 0.10 Scenario A — 0.90

Scenario B — 0.05 Scenario B — 0.95

Scenario C — 0.10 Scenario C — 0.90

Figure 3. Example 1. Conceptual models for facies classification:
(a) scenario A (reference model), (b) scenario B with thick layers,
and (c) scenario C with thick sand and thin shale and predominant
sand proportion. The sand facies is in white, and the shale facies is
in black.
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Figure 4. Example 1. Facies prior realizations and
their corresponding seismic response using Markov
chain simulations: (a) 300 facies prior realizations
(100 for each scenario) randomly selected from
an ensemble of 300,000, (b) reference facies model,
(c) 30 seismic amplitude predictions of the facies
prior realizations (plotted every 10), and (d) reference
seismic data.

Figure 5. Example 1. Facies conditional realiza-
tions and their corresponding seismic response us-
ing Markov chain simulations: (a) 300 facies prior
realizations (100 for each scenario), (b) reference
facies model, (c) 30 seismic amplitude predictions
of the facies conditional realizations (plotted every
10), and (d) reference seismic data.
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the transition matrix T of the Markov chain model that includes the
probabilities of the transition from one facies to another facies at the
interfaces. The transition matrix is used to sample the facies profiles
from the probability pðmjθÞ: The facies value at the first depth lo-
cation is sampled from the prior distribution of the facies, whereas
the following facies values along the profiles are sampled from the
Markov chain transition probabilities conditioned by the facies
value sampled at the previous depth location. In general, the tran-
sition probability matrix is assumed to be known; however, this
assumption might affect the inversion results. I propose to perform
the Bayesian facies classification using three different transition
matrices (Table 1) estimated from the three conceptual models in
Figure 3. The transition matrix (T1) in scenario A is the same as the
one associated to the true model (0.9 probability of staying in the
same facies and 0.1 probability of transitioning to the other facies);
the transition matrix (T2) in scenario B shows higher probability of
staying in the same facies (0.95 probability) and lower probability
to transition to the other facies (0.05); the transition matrix (T3) in
scenario C is asymmetric and shows high probabilities of staying
in sand (0.9) and transitioning from shale to sand (0.9) and low
probabilities of staying in shale (0.1) and transitioning from sand
to shale (0.1). The transition matrices in A and B lead to the same
prior proportions of 50% of sand and 50% of shale, whereas the
transition matrix in C leads to shale prior proportion equal to 10%
and sand prior proportion equal to 90%.

The parameters θ include the transition probabilities of the tran-
sition matrix. I assume that the three transition matrices in scenarios
A, B, and C have the same prior probability equal to 1/3
(Pðθ ¼ TiÞ ¼ 1∕3 for i ¼ 1; 2; 3). I then sample the facies realiza-
tion, that is, a stochastic simulation of the facies profile, from the
corresponding transition matrices. In Figure 4a, I sample 300,000
realizations of facies (10,000 from each transition matrix) and show
1% of the realizations (300 realizations of facies, 100 from each tran-
sition matrix). The realizations are sampled sequentially according to
the transition matrix: The first facies value (at the top) is sampled
from the prior distribution of facies (50% sand and 50% shale for
scenarios A and B; 90% sand and 10% shale for scenario C);
and then, the following values at locations k are sequentially sampled
according to the probabilities pi;j ¼ Pðfk ¼ ijfk−1 ¼ jÞ for
i; j ∈ fsand; shaleg, that is, the probabilities in the transition matrix.
The seismic amplitude responses computed from the prior model are
shown in Figure 4c. Because the realizations are only based on the
prior transition probabilities but are not conditioned to any data, the
facies profiles and their seismic responses do not match the reference
model and data (Figure 4b and 4d). For comparison, I show facies
conditional realizations, conditioned by seismic data, and their cor-
responding seismic responses in Figure 5. For each transition matrix,
I show 100 conditional simulations. The prior assumptions affect the
final simulations, but a coherent information in the sequence of the
facies interfaces can be detected (Figure 5a).

Figure 6. Example 1. Facies posterior realizations
and their corresponding seismic response using
Markov chain simulations: (a) 100 of 30,000 facies
realizations, (b) posterior probability of shale,
(c) posterior probability of sand, (d) most likely fa-
cies model, (e) reference facies model, and (f) 10
seismic amplitude predictions (plotted every 10)
compared to reference seismic data (gray lines).
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I first compute the probability pðmjdÞ of the model m given the
reference data using equation 6, summing over the three possible
scenarios for the parameters θ ¼ Ti, for i ¼ 1; 2; 3. The probability
is computed using a Monte Carlo rejection sampling (Robert and
Casella, 2013) with an acceptance rate of 10% (30,000 realizations).
The Monte Carlo rejection sampling generates samples from the
posterior distribution by using a uniform proposal distribution
and accepting or rejecting samples according to the likelihood func-
tion. The posterior probability is shown in Figure 6; the probability
of sand and shale, as well as the most likely facies model, match the
facies reference model. Figure 6a shows 100 posterior realizations,
to illustrate the variability of the solutions.
I then compute the probability pðθjdÞ of the parameters θ given the

reference data using equation 9. The three transition matrices are as-
sumed to be equiprobable; therefore, PðθÞ ¼ 1∕3 for every θ, and the
probability PðdÞ is a normalizing constant. Hence, the probability
pðθjdÞ reduces to the computation of the sum in equation 9, where
the two probabilities are obtained from the Monte Carlo sampling.
The conditional probability pðθjdÞ becomes Pðθ ¼ T1jdÞ ¼ 0.83,
Pðθ ¼ T2jdÞ ¼ 0.06, and Pðθ ¼ T3jdÞ ¼ 0.11, and this shows that
the most likely set of parameters is represented by the transition ma-
trix T1 of scenario A, which is indeed the transition matrix of the true
model. If I decrease the S∕N) of the data to five and repeat the in-
version, the results are still consistent: Pðθ ¼ T1jdÞ ¼ 0.72,
Pðθ ¼ T2jdÞ ¼ 0.14, and Pðθ ¼ T3jdÞ ¼ 0.14. However, if I
decrease S∕N ¼ 2, the probabilities tend to regress toward the prior,
Pðθ ¼ T1jdÞ ¼ 0.59; Pðθ ¼ T2jdÞ ¼ 0.22; and Pðθ ¼ T3jdÞ ¼
0.19; and with S∕N ¼ 1.25, the results become Pðθ ¼ T1jdÞ ¼
0.42, Pðθ ¼ T2jdÞ ¼ 0.29, and Pðθ ¼ T3jdÞ ¼ 0.28.

Example 2: Multiple training images

In the second example, I repeat the same exercise using multipoint
geostatistics simulations using training images (Mariethoz and Caers,
2014). The aim of multipoint geostatistics is to generate a realization
of subsurface properties with complex spatial correlations and struc-
tures (e.g., connectivity and stacking patterns). In multipoint geosta-
tistics, the spatial correlation of the model variables and the
conditional probabilities for the simulation are inferred from a train-
ing image that represents a conceptual geologic model (Mariethoz
and Caers, 2014). I adopt the direct sampling simulation (DSS)
method (Mariethoz et al., 2010), but any other algorithm, such as
single-normal equation simulation (SNESIM) or simulation of pat-
terns (SIMPAT), could be used (Mariethoz and Caers, 2014). In
the context of facies simulations, DSS sequentially simulates samples
along the facies profile according to a random path of the depth lo-
cations and uses the previously simulated samples (at different depth
locations) as conditioning data. Differently from Markov-chain mod-
els (example 1), where only the sample above is used, in DSS the
entire set of previously simulated samples is used. The new sample
is generated according to the similarity of the simulated samples with
the patterns observed in the training image (Mariethoz et al., 2010).
The inversion problem is the same as in example 1, with the same

likelihood function, but the prior models are the training images. I
assume three possible (equiprobable) training images represented
by the conceptual models in Figure 3. The prior probability is uni-
form, Pðθ ¼ TIiÞ ¼ 1∕3 for i ¼ 1; 2; 3. The prior realizations are
shown in Figure 7. Similar to the previous example, the posterior
probability pðmjdÞ of the modelm given the data is computed using
a Monte Carlo rejection sampling method. The posterior realiza-

Figure 7. Example 2. Facies prior realizations and
their corresponding seismic response using multi-
point geostatistics simulations: (a) 300 facies prior
realizations (100 for each scenario) randomly se-
lected from an ensemble of 300,000, (b) reference
facies model, (c) 30 seismic amplitude predictions
of the facies prior realizations (plotted every 10),
and (d) reference seismic data.
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Figure 9. Example 2. Facies posterior realizations
with additional training image: (a) additional train-
ing image with interbedded shale in sand layers,
(b) posterior probability of sand, (c) most likely
facies model, (d) reference facies model, and
(e) 100 of 30,000 facies realizations.

Figure 8. Example 2. Facies posterior realizations
and their corresponding seismic response using
multipoint geostatistics simulations: (a) 100 of
30,000 facies realizations, (b) posterior probability
of shale, (c) posterior probability of sand, (d) most
likely facies model, (e) reference facies model, and
(f) 10 seismic amplitude predictions (plotted every
10) compared to reference seismic data (the gray
lines).
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tions are shown in Figure 8. Despite the different simulation meth-
ods, that is, multipoint geostatistics based on training images rather
than sequential simulations using Markov-chain transition matrices,
the results are very consistent with those in Figure 6.
I then compute the probability pðθjdÞ of the training images TIi

for i ¼ 1; 2; 3 given the observed seismic data. According to the
computed conditional probability pðθjdÞ, Pðθ ¼ TI1jdÞ ¼ 0.74;
Pðθ ¼ TI2jdÞ ¼ 0.22; and Pðθ ¼ TI3jdÞ ¼ 0.04, the most likely
set of parameters is represented by the training image TI1 of sce-
nario A, that corresponds to the true conceptual model.
I then repeat the same numerical experiment, but with an additional

training image (Figure 9a) that shows shale layers alternated to sand
layers with interbedded thin shale. This additional training image is
potentially compatible with the measured data since the interbedded
shale layers within sand layers are below seismic resolution. The
prior distribution of the training images is uniform; hence, the
prior probability of each training image is Pðθ ¼ TIiÞ ¼ 0.25, for
i ¼ 1; : : : ; 4. The results of the inversion are shown in Figure 9.
The most likely model is similar to the one obtained in Figure 8 (us-
ing only three training images), but the posterior realizations show
some interbedded shale layers. These layers come from the prior
model and are not rejected by the data likelihood. Indeed, the com-
puted conditional probability of the prior parameters show high val-
ues for TI1 (i.e., the reference model) and TI4 (i.e., the additional
training image with interbedded shale layers), Pðθ ¼ TI1Þ ¼ 0.64;
Pðθ ¼ TI2Þ ¼ 0.01; Pðθ ¼ TI3Þ ¼ 0.04; and Pðθ ¼ TI4Þ ¼ 0.31.

Example 3: Multimodal continuous distributions with
a different number of modes

The third example is an inverse problem with continuous proper-
ties. The model variablem represents the porosity and the volume of
clay, and the data d represent P- and S-impedance. The parameter θ
represents the number of modes in the multimodal distribution of

petrophysical properties. The prior number of modes is assumed to
be finite and relatively small, given the limited range of the petro-
physical values. I assume that the prior distribution of petrophysical
properties is a Gaussian mixture model, and I apply a Bayesian
rock-physics inversion method to predict the point-wise posterior
probability of the model given the data as in Grana and Della Rossa
(2010). For a given value of the parameter θ (i.e., the number of
modes of the multimodal distribution), the solution of the inverse
problem is analytically tractable under the Gaussian mixture
assumption (Grana and Della Rossa, 2010).
The method is applied to a set of measurements extracted from a

well log data set in a clastic reservoir. The well-log samples are
measured in a sequence of sand and shale. The measured elastic
data are shown in Figure 10. The prior distributions of petrophysical
properties with a variable number of modes are shown in Figure 11.
I assume that the number of modes (i.e., the number of components
of the Gaussian mixture model) is an integer between one and three.
I then compute the posterior distribution pðmjdÞ of petrophysical

properties conditioned by impedances using a Bayesian Gaussian
mixture inversion assuming a linearized rock physics model in each
component as in Grana et al. (2017). Differently from the previous
two examples, the inversion does not include a spatial correlation

Figure 11. Example 3. Prior distribution of petrophysical properties
with three different modes: from (a) to (c) the number of modes
increases from one to three. The black dots represent the data,
and the colored lines represent the probability contours of the Gaus-
sian components.

Figure 10. Example 3. Reference well log data: (a) porosity, (b) vol-
ume of clay, (c) P-impedance, and (d) S-impedance.
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model and the solution can be analytically computed at each point
for each number of modes. The posterior distribution is then obtained
by summing over all the possible prior models as in equation 6. The
results are shown in Figure 12a and 12b and show a good agreement
with the reference petrophysical curves. The distribution pðθjdÞ is
also computed. The results are shown in Figure 12c. In general,
the multimodal models (with two or three modes) have higher like-
lihood than the unimodal model. However, at many points, the mod-
els with two and three modes have similar likelihood (between 0.35
and 0.40). Therefore, both models with two and three modes could
be applied in this inversion.

Example 4: Mixed discrete-continuous distribution

In this example, the data set is the set of well logs shown in
Figure 10 and corresponding seismograms (Figure 13). The model
variables m include facies in addition to porosity and clay volume.
First, we apply the inversion to sonic logs, and then to near and far
seismograms. The parameters θ are the number of modes and the
transition probabilities of the Markov chain. I assume that only two
cases are possible eight facies with the transition matrix shown in
Table 2 (model A) and three facies with the transition matrix shown
in Table 3 (model B). Model 8 has been defined based on deposi-
tional models using core analysis; model B is a simplified model
based on the facies discriminability using elastic logs. The facies
profiles for both scenarios are shown in Figure 13c and 13d. In
model A, the eight facies include marine silty-shale, prodelta, flood
plain, mouth bar, distributary channel, crevasse splay, tidal deltaic
lobes, and tight formations. In model B, the three facies represent
sand, silt, and shale.

Figure 13. Example 4: Seismic data and facies classification included
in the data set in Figure 10: (a) seismogram (near angle, 8°), (b) seis-
mogram (far angle, 25°), (c) facies profile (eight facies model), and
(d) facies profile (three facies model). In the facies profiles, the colors
represent the marine silty-shale in dark blue, prodelta in blue, flood
plain in light blue, mouth bar in green, distributary channel in yellow,
crevasse splay in orange, tidal deltaic lobes in red, and tight formations
in brown (model A); sand in yellow, silt in brown, and shale in black
(model B).

Figure 12. Example 3. Posterior distribution of
the Bayesian inversion method: (a) posterior dis-
tribution of porosity, (b) posterior distribution of
volume of clay, and (c) posterior distribution of
the number of components of the Gaussian mix-
ture. The color represents the posterior probability
at each point.
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For each of the two models, I apply the inversion methodology
presented in Grana and Della Rossa (2010) in a multivariate setting.
The prior transition matrices are shown in Tables 2 and 3. Sets of
multiple prior (unconditional) realizations of the facies profiles are
shown in Figure 14 for both scenarios, for three and eight facies.
The prior distributions of the continuous petrophysical properties, the
porosity and the volume of clay, are shown in Figure 14. Because of
the large prior variance of the petrophysical properties in each facies,
many components overlap and the resulting distributions are bimodal
(low-porosity clay and high-porosity sand). The distributions of pet-
rophysical properties are assumed to be the same along the vertical
profile.
I first apply the inversion to well log data, P-impedance and

S-impedance, for the prediction of facies, the porosity and the vol-
ume of clay. The results are shown in Figure 15. The model with
eight facies has a higher posterior probability. Indeed, the probabil-
ity pðθjdÞ for model A is 0.78 and the probability pðθjdÞ for model
B is 0.22. The uncertainty in the posterior probability of the petro-
physical properties, the porosity and the volume of clay, is relatively
small, and the predictions are accurate. I then apply the inversion to
the seismic trace, near and far offsets (corresponding to 8° and 25°
angles). The results (Figure 16) are clearly affected by the low res-
olution of the data. In this case, the model with three facies has a
higher posterior probability: The probability pðθjdÞ for model A is
0.47, and the probability pðθjdÞ for model B is 0.53. The data are
compatible with models A and B probably because most of the thin
layers in model A are below seismic resolution and their elastic
properties are close to the average. The conditional means for poros-
ity and volume of clay tend to converge to the modes of the model
with less components. The most likely facies model is less accurate
than in the previous case. However, this could be due to the non-
stationarity of the true model, which is hard to reproduce with
stationary Markov chains or training images (Doyen, 2007).

Example 5: 2D application

I finally apply the proposed methodology to a facies classification
problem of a 2D seismic section. The reference model is presented in
de Figueiredo et al. (2019b) and is shown in Figure 17. The model
includes two potential sand reservoir layers surrounded by shale
layers. The top reservoir is filled by oil and water, whereas the bottom
reservoir is filled by water only. The data set includes four angle
stacks corresponding to 12.5°, 25°, 37.5°, and 50°, with an average
frequency of 37, 32, 29.5, and 27 Hz, respectively. The S/N is 10. The

seismic data are shown in Figure 18. Three different conceptual mod-
els were build using object modeling (Caers, 2011) to test the meth-
odology: a model with flat layers (modelC1, Figure 17b), an anticline
model (model C2, Figure 17c), and a structural model interpreted
from the seismic data (model C3, Figure 17d).
The inversion was performed using a Monte Carlo approach. I first

generate a set of 100 facies realizations for each prior model in Fig-
ure 17, using object modeling. Due to the dimension of the data set, I
use multidimensional scaling (Caers, 2011; Azevedo et al., 2013) to
evaluate the conditional probabilities pðdjm; θÞ and pðmjθÞ in a
lower dimensional space. The posterior distribution is computed us-
ing equation 6. The posterior probabilities of the three facies are
shown in Figure 19 with the most likely model. In this example,
the results show that the prior models C1 and C2 are not compatible
with the data. Indeed, the posterior probabilities of the three concep-
tual models, computed using equation 9, are Pðθ ¼ C1Þ ¼ 0.05,
Pðθ ¼ C2Þ ¼ 0.01; and Pðθ ¼ C3Þ ¼ 0.94.

DISCUSSION

The presented workflow is very general and can be applied in
combination with any Bayesian inverse method. Indeed, it can
be applied with analytical methods for Bayesian inversion or clas-
sification as well as the Monte Carlo and McMC algorithms. In gen-
eral, the implementation of the method is simple when the number
of possible values of the prior parameters is limited because the pos-
terior distribution can be obtained as a sum over all the possible
prior parameters. Examples of applications include facies classifi-
cation with different training images or transition matrices and pet-
rophysical inversion with Gaussian mixture with different numbers
of components (i.e., modes). For continuous parameters, the solu-
tion of the integral might not be analytically tractable, except for

Table 2. Example 4. Transition matrix for eight facies model.

Marine s. shale Prodelta Flood plain Mouth bar Dist. channel Crevasse splay Tidal d. lobes Tight

Marine s. shale 0.99 0.00 0.00 0.01 0.00 0.00 0.01 0.00

Prodelta 0.00 0.96 0.00 0.00 0.01 0.00 0.02 0.01

Flood plain 0.00 0.00 0.92 0.00 0.08 0.00 0.00 0.00

Mouth bar 0.00 0.01 0.00 0.97 0.01 0.00 0.00 0.00

Dist. Channel 0.00 0.01 0.02 0.02 0.93 0.01 0.00 0.01

Crevasse splay 0.00 0.00 0.00 0.00 0.03 0.92 0.00 0.05

Tidal d. lobes 0.01 0.01 0.00 0.00 0.00 0.02 0.93 0.03

Tight 0.00 0.03 0.03 0.00 0.06 0.04 0.06 0.78

Table 3. Example 4. Transition matrix for three facies
model.

Shale Silt Sand

Shale 0.97 0.01 0.02

Silt 0.03 0.95 0.02

Sand 0.03 0.01 0.96
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Figure 15. Example 4. Posterior distributions con-
ditioned by well log data: (a) reference facies
(model A), (b) most likely facies model, (c) pos-
terior distribution of facies, (d) posterior distribution
of porosity, and (e) posterior distribution of volume
of clay. The black lines in (d and e) represent the
actual well log.

Figure 14. Example 4. Prior geostatistical simula-
tions of facies and prior distributions of petrophys-
ical properties: (a) prior realizations using eight
facies and the corresponding transition matrix,
(b) prior distributions of porosity and volume of
clay based on 8C Gaussian mixture model, (c) prior
realizations using three facies and the correspond-
ing transition matrix, and (d) prior distributions of
porosity and volume of clay based on 3C Gaussian
mixture model.
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Gaussian linear likelihood and Gaussian prior models; therefore, the
integral should be approximated by discretizing the parameter
space. All of the examples assume a limited number of prior models
(between two and four), but the approach could be extended to a
larger number of prior models.
The computational cost of the methodology mostly depends on

the algorithm used for the Bayesian inversion method and the
choice of the forward model used for the likelihood evaluation.

The inversion with multiple priors can run in parallel because each
inversion is independent from the others. The approach can be ap-
plied using different forward operators: convolutional models of
Zoeppritz equations, Kennett’s invariant imbedding method, the
Born weak scattering approximation, as well as different rock-phys-
ics relations. Theoretically, the formulation could be extended to the
full-waveform inversion but it would require advanced computa-
tional methods to make the computational cost feasible, and McMC

Figure 17. Example 5. Two-dimensional synthetic
model: (a) reference facies model, (b) prior model 1
with flat layers, (c) prior model 2 with an anticline
structure, and (d) prior model 3 with a geologic
structure interpreted from seismic data. The shale
is in yellow, water sand is in blue, and oil sand is
in green.

Figure 16. Example 4. Posterior distributions con-
ditioned by seismic data: (a) reference facies
(model B), (b) most likely facies model, (c) pos-
terior distribution of facies, (d) posterior distribu-
tion of porosity, and (e) posterior distribution of
volume of clay. The black lines in (d and e) re-
present the actual well log.
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methods should be replaced with faster and highly parallelizable
stochastic algorithms, such as gradual deformation and ensemble-
based methods. The proposed approach could be extended to the
parameters of the forward operator, such as the rock physics param-
eters and the seismic wavelet. Advanced geostatistical methods

based on nonstationary assumptions (Mariethoz and Caers, 2014)
could also be applied.
In real data applications, several parameters and assumptions of

the model, such as the wavelet, the S/N, the rock-physics parame-
ters, and the number of facies, should be included in the study

before applying the proposed inversion workflow
because these elements could affect the uncer-
tainty in the posterior distributions of the model
variables. In the proposed examples, the wavelet
is assumed to be known and accurate; therefore,
there is no uncertainty associated with the wave-
let. However, in practical studies, the wavelet is
statistically extracted from the data and such es-
timation could be uncertain. Similarly, the meas-
urement errors are often assumed to be Gaussian
and uncorrelated and the covariance matrix of the
errors in the measurements is generally assumed
to be diagonal with the same variance for all the
measurements. However, seismic processing
could introduce correlated errors in the data,
which can affect the assessment of the posterior
uncertainty. In this case, the covariance should be
a full matrix built using a correlation function for
the data error.
Geostatistical methods allow the generation of

multiple realizations of the model properties to
capture the model uncertainty; however, in many
practical applications only a limited number of
models are used for model forecasting and deci-
sion making. The uncertainty quantification is
generally summarized through a set of statistical
estimators, such as P10, P50, and P90 of the
properties of interest (e.g., the total oil in place
or the net pay). Posterior probabilities can be em-
bedded in decision trees and the uncertainty
quantification in the predicted results is valuable
in decision-making processes (Caers, 2011).

CONCLUSION

I presented a mathematical formulation for a
general Bayesian inversion problem with multi-
ple prior models. The method can be applied to
discrete and continuous random variables for in-
version and classification problems. The formu-
lation provides the posterior density function of
the model parameters conditioned by the ob-
served data, as well as the posterior distribution
of the model parameters given the data. The
probability of the model given the data is the
solution of the inverse problem in a Bayesian
setting, and it is the obtained by summing
all of the likelihood functions weighted by the
prior probabilities. The probability of the model
parameters represents how compatible the prior
model is with the observed data. Therefore,
the proposed method can be used to discard prior
models that might be geologically acceptable but
that are inconsistent with the data. The formu-
lation with multiple prior models leads to a better

Figure 18. Example 5. Partial-stacked seismic data: (a) angle stack 12.5°, (b) angle stack
25°, (c) angle stack 37.5°, and (d) angle stack 50°.

Figure 19. Example 5. Bayesian inversion results (a) most likely facies model, (b) pos-
terior probability of water-sand facies, (c) posterior probability of oil-sand facies, and
(d) posterior probability of shale facies. The colors in plot (a) represent the facies (shale
in yellow, water sand in blue, and oil sand in green). The colors in plots (b-d) represent
the posterior facies probability.
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representation of the uncertainty in the model predictions due to the
uncertainty in the model parameters.
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