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S U M M A R Y
Carbon capture and storage is an important technology for greenhouse gas mitigation. Monitor-
ing of CO2 storage should, in addition to locating the plume, provide quantitative information
on CO2 saturation. We propose a full waveform inversion (FWI) algorithm for the prediction
of the spatial distribution of CO2 saturation from time-lapse seismic data. The methodology
is based on the application of a rock-physics parametrized FWI scheme that allows for direct
updating of reservoir properties. We derive porosity and lithology parameters from baseline
data and use them as input to predict CO2 saturation from monitor data. The method is tested
on synthetic time-lapse data generated for the Johansen formation model. Practical issues as-
sociated with field data applications, such as acquisition limitations, construction of the initial
model, noise and uncertainty in the rock physics model, are taken into account in the simula-
tion. The results demonstrate the robustness of our approach for reconstructing baseline and
monitor models. We also illustrate the potential of the approach as compared to conventional
two-step inversion algorithms, in which an elastic FWI prediction of velocities and density is
followed by rock physics inversion.
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1 I N T RO D U C T I O N

An important technology supporting reduction of greenhouse gas emissions is the geological storage of carbon dioxide (Davis et al. 2019;
Ringrose 2020; Pörtner et al. 2022); for instance, deep saline aquifers have been identified as promising sites for carbon dioxide (CO2)
storage. To ensure and verify the safe geological containment of CO2 underground, monitoring of CO2 storage site performance is mandatory
(Rütters et al. 2013). Injection of CO2 into the brine-saturated rocks of a saline aquifer changes the elastic moduli, and therefore the seismic
response of these media, making seismic a primary technology for monitoring. Time-lapse seismic surveys, in which a series of seismic data
sets are acquired at time intervals, provide a monitoring mode in which migration and distribution of the injected CO2 can be tracked, and
leakage problems if any can be identified (Arts et al. 2003; Chadwick et al. 2005; Romdhane & Querendez 2014; Ghosh et al. 2015). Ideally,
for reliable conformance verification, quantitative estimates/maps of CO2 saturation would be produced by such technology, to be compared
against reservoir modelling predictions (Dupuy et al. 2021a).

Qualitative interpretation of CO2 from analysis of amplitude changes and time shifts on post-stack seismic images is generally insufficient
to understand detailed reservoir conditions (Alemie 2017). Moreover, multiple reflections, interference effects such as tuning, and attenuation
introduce ambiguities into seismic images which impede estimation of CO2 position (Queißer & Singh 2013b; Furre et al. 2015). A promising
approach to address these issues involves seismic full waveform inversion (FWI), a set of methods with the capacity to produce high-resolution
subsurface models, by involving a more complete subset of the information content of seismic data (Tarantola 1986; Brossier et al. 2009;
Virieux & Operto 2009). FWI, although computationally intensive, in principle accounts for all of these wave propagation effects, and high
resolution elastic parameter models (e.g. velocity, density and modulus) derived from FWI can be directly linked to reservoir (or rock physics)
properties, such as porosity, fluid saturation and pore pressure. FWI therefore appears to be a potentially powerful tool for quantitative CO2

characterization and monitoring.
Progress has been reported in managing many of the challenges of practical FWI, which include its computational complexity, dependence

on the starting model, sensitivity to incomplete data, etc. (Operto et al. 2013; Prieux et al. 2013; Métivier et al. 2017; Pan et al. 2019).
Time-lapse FWI faces several additional challenges, not least of which is the need to detect very small changes in the model, changes that
are easily obscured by ambient noise, variable near-surface conditions and acquisition non-repeatability (Kamei & Lumley 2017). Efforts
have been made to mitigate non-repeatability, through design of monitoring systems (Shulakova et al. 2015), data processing strategies
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(Roach et al. 2015) and inversion strategies (Asnaashari et al. 2015; Maharramov et al. 2016; Alemie 2017; Kamei & Lumley 2017; Fu
et al. 2020). As these progress, basic consideration of how to optimally extract critical parameters, especially fluid saturation indicators,
becomes increasingly important. In CO2 storage applications, rock properties are typically extracted sequentially, with the seismic inversion
process geared towards determination of elastic properties, from which the actual properties of interest are subsequently determined, often
qualitatively (Johnston 2013; Zhang et al. 2013). Queißer & Singh (2013a) applied elastic FWI to the Sleipner time-lapse seismic data,
and correlated velocity changes with CO2 saturation changes using the Gassmann’s equations; also at Sleipner, Dupuy et al. (2017, 2021a)
combined acoustic FWI and rock physics inversion to obtain spatial distribution of CO2 saturation with uncertainty assessment. This aspect
of uncertainty quantification is critical for CO2 storage monitoring as decisions have to be taken based on the monitoring results. However,
reports of quantitative, waveform-based CO2 saturation predictions are uncommon.

The sequential approach itself is neither a necessary, nor always optimal, strategy. The estimation of reservoir properties directly from
the seismic data (as opposed to serially, after elastic parameters are first estimated) has several distinct advantages, the main one being that
it involves an integrated wave propagation and rock physics formulation, maintaining consistency between elastic and reservoir properties
(Doyen 2007; Bosch et al. 2010). Inversions of this type can be found in seismic amplitude variation with offset (AVO) settings (Bosch et al.
2007; Spikes et al. 2007; Grude et al. 2013; Liu & Grana 2018; Grana et al. 2020), but only very recently have FWI formulations in this mode
been examined. Poroelastic FWI (De Barros & Dietrich 2008; Morency et al. 2009; Yang et al. 2019) moves in this direction, for instance,
though the inverse problem is reported to be highly under-determined and ill-posed, and the computational burden very large (Dupuy et al.
2021a). Nonetheless, we identify expansion of these efforts as a high priority, in order to take advantage of the more general models available
to FWI over AVO (Mallick & Adhikari 2015). Recently, Hu et al. (2021) formulated a direct procedure for updating rock and fluid properties
within elastic FWI (i.e. EFWI). This was achieved by re-parametrizing the inversion in terms of rock physics properties, adopting a viewpoint
similar to that of Russell et al. (2011) within an AVO environment. The main advantages of this approach are: (1) it allows examination of
any rock physics property that has a well-defined relationship with elastic parameters; (2) it leads to more stable solutions in comparison to
those produced through sequential inversion and (3) it shares the same numerical structure as the conventional EFWI. Hu & Innanen (2021)
extended the approach to incorporate prior model information.

We have applied the method of Hu et al. (2021) to the problem of CO2 saturation prediction from time-lapse seismic data. To set out the
results of these tests, we first review the rock physics FWI framework within which direct rock property updates are calculated, and describe
how to apply this approach to time-lapse problems. We then systematically examine the response of the inversion to a synthetic time-lapse
data set. Specifically, we recover porosity and lithology parameters from the baseline seismic data, and then use these results as input in the
monitor seismic survey, producing estimates of CO2 saturation. The reliability of the approach is quantified by comparing it to conventional
approaches. We end by discussing how uncertainties related to data and rock physics model affect CO2 saturation reconstructions.

2 M E T H O D

2.1 Elastic FWI with rock-physics parametrizations

The FWI algorithm we apply is an outgrowth of that set out by Hu & Innanen (2021), which in turn is based on the frequency-domain
inversion formulation of Keating & Innanen (2020). We consider isotropic elasticity and a 2-D medium. In the frequency domain, the 2-D
elastic wave equations can be written as (Pratt 1990)
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where ω is the angular frequency, ρ is the density, u and v are, respectively, the horizontal and vertical displacements, f and g are the
corresponding source terms, and λ and μ are the Lamé parameters. eq. (1) is discretized and solved using the finite-difference equations,
which can be formulated in a matrix form

Au = f, (2)

where the coefficients of the impedance matrix A depend on the frequency and the medium properties, and u = (u, v) and f = (f, g) are the
vectors containing displacement fields and source terms, respectively. The coefficients within A are determined by iteratively minimizing the
differences between seismic observations dobs, and simulation of data dsyn within model m = (m1, m2,..., mn). The objective function to be
minimized is

E(m) = 1

2
�dt�d∗, (3)

where �d = dobs − dsyn contain the data residuals, and the superscripts t and ∗ denote the transpose and the complex conjugate, respectively.
The gradient of E with respect to the ith model variable mi is Brossier et al. (2009)
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where R takes the real part of its argument. The quantity ∂A/∂mi is the scattering radiation pattern associated with model unknown mi.
Within a Newton optimization, the search direction δm for model update is the solution of

H δm = −∇m E, (5)

where H is the Hessian operator. We employ a truncated Gauss Newton method (Métivier et al. 2017), in which eq. (5) is solved iteratively,
involving only Hessian-vector products.

Let m = [m1, m2, m3] represent a reference FWI parametrization which is based on three elastic parameters (e.g. the P- and S-wave
velocities plus density) and r = [r1, r2,..., rn] represent a desired FWI parametrization based on n different rock physics properties, we
can express the elastic variables at the ith spatial position as a function of the rock physics variables at the same position: (m1

i , m2
i , m3

i ) =
g(r 1

i , r 2
i , ..., rn

i ), where g is the rock physics model. From eq. (4), we observe that the elastic variables are altered at each iteration by an update
proportional to ∂A/mi . To transform to the new parametrization r, we compute the chain rule
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for each of j = (1, 2,..., n). Given a conventional FWI scheme set up to update variables m, within which the partial derivatives of A are
known, and given the rock physics model g, so that the partial derivatives of m with respect to r can be derived, through eq. (6) we can move
to a new scheme in which the vector r is updated.

2.2 Rock physics model

A significant number of rock physics models have been developed, based on experimental data or physical theories or both, to relate the
elastic properties of rock to porosity, mineralogy and pore fluid (Mavko et al. 2020). We examine a popular rock physics model: the stiff-sand
model. This model is widely applied to clay-rich or shaly sandstones and even to shales (Spikes et al. 2007; Hossain et al. 2011; Grana 2016a;
Wawrzyniak-Guz 2019).

The stiff-sand model connects two endpoints in the elastic modulus versus porosity plane. The zero-porosity endpoint has the bulk and
shear moduli of the solid phase K0 and μ0, which is calculated according to Voigt–Reuss–Hill average (Hill 1952):
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where N is the number of mineral components, fi, Ki and μi are the volume fraction, bulk modulus and shear modulus of the ith mineral
component, respectively. Hertz–Mindlin grain-contact theory provides an estimation of the bulk and shear moduli of a dry rock, under the
assumption that the rock frame is a random pack of spherical grains, subject to an effective pressure Pe, with a given porosity, and an average
number of contacts per grain n (coordination number). In the stiff-sand model, Hertz–Mindlin equations are used to compute the bulk and
shear moduli of the dry-rock KHM and μHM at the critical porosity φc:
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where v0 is the Poisson’s ratio of the solid phase, and f is the degree of adhesion between the grains. Then, for porosity φ ∈ (0, φc), the bulk
and shear moduli Kdry and μdry of the dry-rock are estimated by interpolating the elastic moduli at zero porosity and at critical porosity using
the modified Hashin–Shtrikman upper bounds:
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6
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According to Gassmann’s equations, the shear modulus of the saturated rock μsat = μdry, and the bulk modulus of the saturated rock Ksat is
given by

Ksat = Kdry + (1 − Kdry/K0)2

φ/K f + (1 − φ)/K0 − Kdry/K 2
0

, (14)
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Table 1. Rock physics parameters used in this study.

Parameter Value Parameter Value

Quartz bulk modulus 37 GPa CO2 bulk modulus 0.02 GPa
Quartz shear modulus 44 GPa CO2 density 0.68 g cm−3

Quartz density 2.65 g cm−3 Effective pressure 0.01 GPa
Clay bulk modulus 25 GPa Critical porosity 0.4
Clay shear modulus 9 GPa Coordination number 9
Clay density 2.55 g cm−3 Degree of adhesion 1
Water bulk modulus 2.25 GPa
Water density 1.03 g cm−3

where Kf is the fluid bulk modulus. The density of the saturated rock is computed as a weighted average of the densities of mineral and fluid
components:

ρ = (1 − φ)
N∑

i=1

fiρi + φ

M∑
i=1

f
′

i ρ
′
i , (15)

where M is the number of fluid components, f
′

i is the bulk modulus of the ith fluid component, and ρ i and ρ
′
i are the density of the ith mineral

component and the density of the ith fluid component, respectively. The velocities as functions of the elastic moduli and density are then

VP =
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Ksat + 4
3 μsat

ρ
, VS =

√
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ρ
. (16)

The partial derivatives of VP, VP and ρ with respect to any rock physics parameters emerging from this model can be calculated. We can then
carry out FWI updates of these parameters according to eq. (6).

In this study, we assume two mineral components, quartz and clay, and two fluid components, water and supercritical CO2. Hence, we
define three model unknowns: porosity (φ), clay content (C) and CO2 saturation (Sc). Then, in eq. (15), for instance, we have N = M = 2, f1 =
C, f2 = 1 − C, f

′
1 = Sc and f

′
2 = 1 − Sc. The bulk modulus of the two-component fluid is calculated using the Brie et al. (1995) equation:

K f = (Kw − Kc)(1 − Sc)e + Kc (17)

where Kw and Kc are the bulk modulus of water and CO2, respectively. e is the patchiness exponent, with low values (down to 1) corresponding
to patchy mixing of fluid phases and high values (up to 40) corresponding to uniform mixing (Dupuy et al. 2021a, b). We consider semi-patchy
mixing behaviour and use a constant e equal to 5.

Additional rock physics parameters, including the elastic moduli and density of each mineral/fluid component, effective pressure, critical
porosity, coordination number and degree of adhesion between the grains, are fixed with the values in Table 1. The modulus and density of
CO2 at temperature 37 oC and pressure 0.01 GPa, given by Mavko et al. (2020), are used.

2.3 Time-lapse FWI

Quantitative CO2 monitoring requires accurate and precise predictions of the CO2 saturation model at any time at which the data are
measured. Although it is possible to jointly invert the three parameters (porosity, clay content and CO2 saturation) from a single seismic
survey, preliminary tests showed that fluid saturation is very difficult to estimate within this parametrization because of the large trade-off
between rock physics parameters and its relatively small impact on the data. Here we consider a favourable case by making two assumptions:
(1) before CO2 injection, there is only one fluid component (water) in the subsurface and (2) porosity and lithology parameters are constant
in time. Therefore, we propose to estimate the variables sequentially, a strategy similar to that of Grana et al. (2020) within a stochastic
inversion framework and Dupuy et al. (2021a) within an FWI environment. First, we apply the rock physics FWI approach to the baseline
(pre-injection) data for the estimation of porosity and clay content; then, we use the same inverse method and use the inverted porosity and
clay content models as prior knowledge (fixed values) to estimate CO2 saturation from monitor (post-injection) data. The objective function
for baseline model reconstruction is expressed as

Eb = ∥∥dobs b(φt , Ct ) − dsyn b(φ, C)
∥∥2

, (18)

where dobs b and dsyn b denote the observed and synthetic baseline data, respectively. φt and Ct denote the true porosity and clay content
models. The baseline CO2 saturation model is equal to 0 everywhere. The goal is to recover the φ and C models by iteratively minimizing the
difference between dobs b and dsyn b.

The objective function for monitor model reconstruction is

Em = ∥∥dobs m(φt , Ct , St
c m) − dsyn m(φinv, Cinv, Sc m)

∥∥2
, (19)
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Figure 1. Johansen data set. (a)–(c) Full-field model and (d)–(f) corresponding model that uses a simplified geometry. The letter J indicates the location of the
Johansen formation; and the dashed line indicates the location of the injection well.

where dobs m and dsyn m are the observed and synthetic monitor data, respectively. φinv and Cinv are the inverted porosity and clay content
models from the baseline survey. They are not updated in the monitor stage. The goal is to recover the saturation model Sc m by iteratively
minimizing the difference between dobs m and dsyn m.

3 N U M E R I C A L E X A M P L E S

We apply the proposed approach to a synthetic model generated from the Johansen data set. The Johansen formation is a deep saline aquifer
located offshore of the south-west coast of Norway. The aquifer is a chosen site for the Northern Lights project, which plans to start operations
in mid-2024, for storage of 1.5 million tonnes of CO2 per year. The MatMoRA project of SINTEF has developed a set of geological models
of Johansen based on seismic and well data (Eigestad et al. 2009; Bergmo et al. 2011). Petrophysical data including porosity and permeability
are available.

3.1 Model description

The original full-field model is discretized by a 149 × 189 × 16 grid, with three layers in Johansen. However, we consider 100 × 16 cells
defined on an irregular gird in the vertical direction (Fig. 1a). The uppermost layer situated approximately 600 m above Johansen is the
Sognefjord formation, which is the main reservoir for the Troll hydrocarbon field. The low porosity layers above and below Johansen are the
Dunlin shale and Amundsen shale, respectively. In particular, the Dunlin shale serves as a cap-rock for the Johansen formation. To account for
lithologies of the geomodel, we introduce a clay volume (Fig. 1b) negatively correlated with porosity, with a correlation coefficient of −0.9.
Assuming the initial water saturation (before injection) is equal to 1 everywhere, the CO2 saturation distribution within Johansen (Fig. 1c) was
calculated by simulating the fluid flow in year 110, 10 yr after stopping a 100-yr injection with a constant injection rate of 1.4 × 104 m3 d−1

(Grana et al. 2020).
Because of computational limitations and lack of data, we create a synthetic model with the injection much shallower than in reality and

the top and bottom layers of the model are assumed to be homogeneous: first, we define a regular grid and interpolate the original data over
the grid. The grid consists of 101×201 node points with a depth increment of 20 m and a position increment of 180 m; second, we change
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Figure 2. Theoretical curves of the stiff-sand model: P-wave velocity, S-wave velocity and density versus (a)–(c) porosity and (d)-(f) CO2 saturation.

the spatial step to 10 m and use relative depth and position. The models in Figs 1(d)–(f) are then used to examine the proposed FWI method.
The sandstone reservoir is distinguished by higher porosity and lower clay content values compared to the surrounding shale. Porosity in the
reservoir varies between 0.15 and 0.29, with the porosity within a zone degrading towards south as the depth of the formation increases. The
initial CO2 saturation is 0 everywhere and then changes locally due to the injection at 750 m depth. The maximum CO2 saturation is 0.9.

In Fig. 2, we compute velocities and density as a function of porosity, clay content and CO2 saturation based on the stiff-sand model.
With CO2 replacing water, the P-wave velocity of the saturated rock decreases due to the lower bulk modulus of CO2, the density decreases
due to the lower density of CO2, and the S-wave velocity slightly increases since the fluid only affects the density in the S-wave velocity
expression. The P-wave velocity does not decrease monotonically as CO2 saturation increases because the relative change in bulk modulus
is smaller than that in density when CO2 saturation is larger than 0.6. It also shows that the sensitivity of the elastic attributes is dominated
by porosity and to a lesser degree by clay content and fluid saturation. In Fig. 3, we plot the velocity and density models corresponding to
the rock property model (Figs 1d–f). The time-lapse elastic changes are consistent with the analysis in Fig. 2. The fluid effect is also well
illustrated in the noise-free synthetic data (Fig. 4).

The inversion experiments are presented in three parts. First, we carry out the direct, rock physics parametrized FWI approach with
noise-free data (Fig. 4), and compute the synthetic data in inversion using the same simulation through which the observed data are generated.
Then, we repeat the test using conventional two-step inversions, in which velocities and density are first determined through elastic FWI,
followed by rock physics properties. These simulations allow us to examine parameter resolution issues and make clear comparisons between
the results of direct and two-step inversions. Finally, we take into account two different sources of uncertainty within the direct approach:
uncertainty in the data and uncertainty in the rock physics model.

In all tests, we consider a surface acquisition geometry, with 20 explosive sources every 100 m at 20 m depth and 100 receivers every
20 m at 10 m depth. The source signature is assumed to be known. The recorded data are multicomponent displacements. We adopt a
multiscale approach (Bunks et al. 1995; Brossier et al. 2009) by inverting 10 frequency bands, each containing five evenly spaced frequencies
from 2 Hz to a maximum frequency; the maximum frequency is 3 Hz for the first band, and it increases to 25 Hz for the last band (following
the strategy advocated by Keating & Innanen 2019). A truncated Gauss–Newton optimization method (Métivier et al. 2017), comprising 20
inner iterations and 1 outer iteration for each frequency band, is used.

3.2 Direct FWI results

3.2.1 Baseline model reconstruction

One of the challenges of predicting rock physics properties from seismic data is the low-frequency (initial) model. In a typical elastic
inversion, the low-frequency model of velocity is often related to models used for seismic processing, for example stacking velocities. In the
rock physics domain, a low-frequency model is more challenging to define because different lithologies might have different rock physics
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Figure 3. True (a)–(c) baseline, (d)–(f) monitor and (g)–(i) time-lapse models of P- and S-wave velocities plus density. (The labels of subfigures, after the
edition, are not consistent with the descriptive caption. We prefer the original labels, as showns in figs 12 and 14, namely ’abc’ on the left, ’def’ on the
middle, and ’ghi’ on the right)

Figure 4. (a) and (d) Baseline, (b) and (e) monitor and (c) and (f) differential seismograms computed for the true model. (a)–(c) Horizontal displacement.
(d)–(f) Vertical displacement. The shot is located at lateral position 1 km. Ricker wavelet source with a central frequency of 15 Hz is used.

models (Grana et al. 2021). Here we derive the initial porosity and clay models from a filtered P-wave velocity model, using regressions of the
direct measurements (well log data) of these variables, which are assumed to be available. We use linear regressions because the nonlinearity
of the VP − φ and VP − C relationships are not strong (Fig. 5). As a result, the initial models in Figs 6(b) and (c) are used in inversion.

The recovered porosity and clay content models are reasonably accurate, with relatively low resolution near the left edge of the model
due to limited observation aperture (Fig. 7). The porosity seems better resolved than clay content thanks to the larger impact of porosity on
seismic attributes (Fig. 2). In Fig. 8, the convergence properties of the inversion are summarized. We start iterations at low frequencies to
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Figure 5. (a) VP − φ and (b) VP − C relationships for constructing the initial φ and C models. The data are from the true model (Figs 1d, e and 3a) at lateral
position 0.5 km.

Figure 6. Initial models: (a) P-wave velocity, (b) porosity and (c) clay content.

prevent convergence of the objective function toward local minima, and then slowly introduce higher frequencies to image fine structures. The
objective function has a sudden increase when entering into a next frequency band, but decreases to close to the original number after model
updating. The solutions are examined via the relative model error ξ = ‖m − mt‖2/‖m0 − mt‖2, where m, m0, and mt represent the inverted,
initial and true models, respectively, so that each model starts its iteration with a unit error. We observe the convergence characteristics of
a reliable inversion. The model errors decrease monotonically, with porosity updated more efficiently than clay content. Fig. 9 shows the
comparison between the initial and inverted models in terms of the modelled data. The data residual is significantly reduced after inversion.

3.2.2 Monitor model reconstruction

In the monitor survey, the observed data are generated from the true model (Fig. 1); the synthetic data are generated from the recovered
baseline model (Fig. 7) plus the current estimate of CO2 saturation. For the initial guess of CO2, we interpret the reservoir horizons from
baseline estimates and restrict saturation variations within the reservoir. The interpreted horizons do not match exactly the rim of the plume
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Figure 7. Inverted models: (a) porosity and (b) clay content. (c) and (d) Vertical profiles extracted from the true, initial and inverted models at lateral positions
x =0.5 and 1.5 km.

Figure 8. Convergence properties. (a)–(c) Frequencies, objective functions and model errors (after updating) within a frequency band, respectively.

(Fig. 10a), allowing uncertainty related to horizons to be taken into account. Regarding saturation values, we use a Gaussian function varying
only in the x-direction with a maximum value of 0.9 at the location of the injection well (Fig. 10b). For the inversion, we incorporate the
first-order Tikhonov regularization term (Tikhonov & Arsenin 1977; Asnaashari et al. 2013) into the objective function, to encourage a small
degree of smoothness in the solution. The hyper-parameter is chosen such that the ratio between the regularization term and data misfit is 1
× 10−4 at each iteration. The recovered model (Fig. 10c) shows a good agreement with the true one, with both the spread of the plume and
saturation values well estimated. The data residuals corresponding to the initial and inverted models are shown in Fig. 11.

One of the advantages of the direct approach is that it allows elastic attributes to be jointly output with rock physics properties. In Figs 12
and 13, the velocity and density models corresponding to the rock physics estimates (Figs 7 and 10) are summarized. The elastic models are
correctly retrieved, in particular, the predicted time-lapse elastic changes match closely the true ones, showing great consistency between the
baseline and monitor reconstructions.

3.3 Two-step inversion results

The two-step inversion combines FWI for elastic attributes and rock physics inversion that transforms the elastic attributes to reservoir
properties.

For the elastic inversion, we parametrize FWI in terms of P- and S-wave velocities, and density. We use the parallel difference strategy
(Plessix et al. 2010; Asnaashari et al. 2015) which independently inverts the baseline and monitor data sets (Fig. 4) starting from the same
initial model (Fig. 6). The time-lapse variation is simply the subtraction between the recovered monitor model and the recovered baseline

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/233/1/402/6852945 by U

niversity of W
yom

ing Libraries user on 22 Septem
ber 2023



CO2 monitoring with rock physics FWI 411

Figure 9. Baseline data residuals corresponding to the (a) and (b) initial model and (c) and (d) inverted model. (e) and (f) Vertical profiles of the data residuals
at lateral position 0.3 km.

Figure 10. (a)–(c) True, initial and inverted CO2 saturation models, respectively. (d) Errors in the inverted model.

model. The results are plotted in Figs 14 and 15. The velocity and density models are well recovered, but less accurately compared to the
result of the rock physics FWI approach (Fig. 12), and the predicted time-lapse variations are contaminated by artefacts more seriously. We
attribute this deficit to a slower convergence of the velocity-density parametrized FWI, when compared to that of the rock physics parametrized
inversion, which results from the fact that more variables are inverted simultaneously.

We examine two approaches for the prediction of rock physics properties from velocities and density. One is a Bayesian non-parametric
approach, in which the joint distribution of elastic and rock physics properties is described by a non-parametric probability density function
estimated using kernel density estimation (Doyen 2007; Grana et al. 2021). We compute the joint distribution based on a training data set
collected from wells and then use it to compute the conditional probability of rock physics variables given velocities and density. The most
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Figure 11. Monitor data residuals corresponding to the (a) and (b) initial model and (c) and (d) inverted model. (e) and (f) Vertical profiles of the data residuals
at lateral position 0.3 km.

Figure 12. Reconstructed velocity and density models via the rock physics parametrized FWI: (a)–(c) baseline, (d)–(f) monitor and (g)–(i) time-lapse change.

likely model (i.e. maximum a posteriori estimate) is subsequently used for analysis. The other one is a global optimization method called
the neighbourhood algorithm (NA), which involves random sampling of model space but makes use of previous samples to guide the search
(Sambridge 1999; Sen & Roy 2003; Dupuy et al. 2016). For both approaches, we predict porosity and clay content from baseline velocity and
density estimates, and CO2 saturation from monitor estimates. Parameters in each inversion are tuned to provide robust results.

Fig. 16 shows that the two approaches yield comparable results of porosity and clay content to the direct inversion, capturing the relevant
reservoir structures. The recovered CO2 model is less than satisfactory, with the shape of the plume clearly distorted and the variation in
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Figure 13. Vertical profiles extracted from the true and inverted models (Figs 3 and 12) at lateral position 0.5 km.

Figure 14. Reconstructed velocity and density models via velocity-density parametrized FWI: (a)–(c) baseline, (d)–(f) monitor and (g)–(i) time-lapse change.

saturation underestimated. Overall, the direct approach predicts CO2 saturation more accurately (Fig. 10c). In Table 2, the quality of the
inverted models within different approaches, measured using root mean squared error, is summarized.

3.4 Direct FWI with noisy data and imperfect rock physics model

To make the numerical study more realistic, we repeat the experiments in Section 3.2 considering two sources of uncertainty: uncertainty in
the measured data owing to noise, and uncertainty in the rock physics model owing to the assumption of the way fluid phases are mixed. The
two uncertainties are examined separately.
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Figure 15. Vertical profiles extracted from the true and inverted models (Figs 3 and 14) at lateral position 0.5 km.

Figure 16. Inverted porosity, clay content and CO2 saturation models within the (a)–(c) Bayesian and (d)–(f) NA approaches.

Table 2. Root mean squared error of the inverted models within different
approaches.

FWI+Bayesian FWI+NA Direct FWI

VP (km s−1, base) 0.060 – 0.048
VS (km s−1, base) 0.040 – 0.033
ρ (g cm−3, base) 0.022 – 0.015
VP (km s−1, monitor) 0.062 – 0.050
VS (km s−1, monitor) 0.040 – 0.033
ρ (g cm−3, monitor) 0.023 – 0.016
φ 0.011 0.012 0.011
C 0.038 0.043 0.044
Sc 0.062 0.046 0.035
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Figure 17. Synthetic noisy data with signal-to-noise ratio equal to 10.

Figure 18. Direct inversion results with noisy data: (a) porosity, (b) clay content and (c) CO2 saturation.

First, we add white Gaussian noise to the noise-free data (Fig. 4) using a signal-to-noise ratio of 10. As a result, the time-lapse seismic
events are obscured by noise (Fig. 17). However, the inversion results (Fig. 18) remain consistent with the noise-free test, even though more
noisy. The prediction error of porosity and clay content is larger toward the left side of the model due to the lack of illumination, and this
likely cause data residuals that have been backprojected to the CO2 estimate. Also, the sharpness of the recovered model is a bit degraded,
indicating that the noise has impeded the convergence.
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Figure 19. (a) P-wave velocity versus CO2 saturation for different mixing behaviours of fluid phases. (b) Recovered CO2 saturation models with erroneous
assumptions on fluid.

We next consider an imperfect rock physics model that has errors on a priori parameter: the patchiness exponent e (eq. 17), which
describes the way CO2 and water are mixed in the pore space. In Fig. 19(a), we plot P-wave velocity as a function of CO2 saturation, assuming
patchy (e = 1), semi-patchy (e = 5) and uniform (e = 40) mixing behaviours, respectively, following the analysis of Dupuy et al. (2021b). It
shows that the patchiness exponent has a large impact on P-wave velocity, especially when CO2 saturation is low (but nonzero). To account for
the uncertainty in the rock physics model, we generate the observed data using a patchiness exponent (e = 1 and 40) different from that used
to compute the data in inversion (e = 5). The results are shown in Fig. 19(b). In the case of e = 40, we observe a similar result to the previous
example, where the rock physics model is assumed perfect (Fig. 10c). This is attributed to the bimodality of the true model and the fact that
the velocity difference between e = 5 and 40 at high CO2 saturations (Sc > 0.6) is almost negligible. In the case of e = 1, the estimation error
increases, but may still be considered as acceptable. Since the patchiness exponent only affects P-wave velocity, our interpretation is that the
use of multicomponent elastic data helps to constrain the saturation estimation.

4 D I S C U S S I O N

To validate the methodology some assumptions on the mineral and fluid phases were made. Indeed, we assume that the mineral phase consists
of two minerals only and the fluid phase consists of water and CO2. The methodology can be extended to more complex rocks as long as the
elastic property of the minerals are known and the effective elastic properties can be modelled using rock physics elastic averages. Potentially
the method can be applied in carbonate, however adequate rock physics models should be developed to account for the interaction of the
fluid with fractured rocks (Vialle & Vanorio 2011; Vanorio 2015). Furthermore the approach could also be extended to a three-phase fluid
system with water, oil and CO2, to model CO2 sequestration in oil reservoirs for enhanced oil recovery, but it requires some prior knowledge
or assumptions on the initial fluid distribution.

In our simulation, the pressure variations are relatively small and we can assume that the effect of pressure changes on elastic properties
and density is negligible. In case of larger variations, a joint rock physics model combining Gassmann’s equations with empirical pressure
relations (MacBeth 2004; Grana 2016b; Mavko et al. 2020) can be used as shown in Landrø et al. (2003), Trani et al. (2011), Bhakta &
Landrø (2014) and Dupuy et al. (2021b). This approach requires adding one degree of freedom for pressure variations in the inversion.

The local smoothness is not always desirable, because it causes an attenuation of the high wavenumbers present in the model. In the CO2

case, we found this constraint helpful in reducing undesired discontinuities and driving the convergence towards geologically meaningful
models. However, one needs to weight the smoothness carefully to keep the level of details expected in an FWI result.

As a local inversion method, FWI bears the danger to end up in one of the numerous local minima. A good initial model is required
to mitigate this problem. In practice, the initial porosity and clay content models can be obtained using some geostatistical interpolation of
filtered logs following the seismically interpreted horizons, and using some correlated variable such as stacking velocities. The initial CO2

model can be generated by simulating the fluid flow in the aquifer, according to the injection parameters and the rock properties estimated
from the baseline survey (Grana et al. 2021).

Geophysical reservoir monitoring can be integrated in history matching and data assimilation workflows (Tavakoli et al. 2013; Ghorban-
idehno et al. 2015) by combining the information from geophysical modelling with dynamic fluid flow simulation to increase the accuracy
of the predicted model during injection and reduce the uncertainty in the model predictions (Chen et al. 2020; Liu & Grana 2020; Tveit
et al. 2020). This approach is particularly useful for CO2 sequestration and enhanced oil recovery studies where production data such as oil
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production and borehole pressure can be used to validate and update the reservoir model (Babak & Deutsch 2008; Jahangiri & Zhang 2012;
Gao et al. 2016; Kamali et al. 2017).

The inversion code is written in MATLAB. The computational cost for the proposed model including 101×201 grid cells with three
unknown variables at each location for a total of 60 903 unknowns is approximately 1.5 hr, with a coarse parallelization over frequencies
on a computer with an Intel Core i5-8600 3.10GHz processor. We note that the computational cost of this problem is about the same per
iteration as for a conventional EFWI because the additional cost for parametrization is negligible. For large-scale field data applications, we
recommend implementing this algorithm in a precompiled language and using massive parallelization on high-performance computers.

5 C O N C LU S I O N

We present a quantitative CO2 monitoring approach which is based on seismic FWI. Unlike conventional FWI approaches which aim at
determination of elastic properties, the proposed scheme allows direct prediction of rock physics properties from seismic data. We propose
to estimate rock frame properties, such as porosity and clay content, from baseline data (before CO2 injection), and then use the results as
input to estimate CO2 saturation from monitor data. The method was tested on a synthetic model developed from the Johansen data set.
With a suitable initial model, the method exhibits higher prediction accuracy than conventional two-step approaches. However, the difference
between the direct and two-step inversions remains methodological and depends on the availability of sufficient constraints to the inversion.
The results with noisy data and erroneous rock physics model further verify the robustness of the direct approach. The proposed methodology
was applied to a saline aquifer but could be extended to depleted hydrocarbon reservoirs as well as enhanced oil recovery and carbon capture,
utilization and storage (CCUS) applications.
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